

info@blaize.tech

Table of Contents

Table of Contents 2

Abstract 3

Disclaimer 3

Scope 3

Procedure 4

Executive summary 5

Severity Definition 6

AS-IS overview 7
StakingMilestones contract overview 7
Vault contract overview 8
YieldFarm contract overview 9
YieldFarmLP contract overview 10

Audit overview 11
Critical 11
High 11
Medium 12
Low 14
Lowest 17
Unit Test Coverage 19

Conclusion 19

2

info@blaize.tech

This document may contain confidential information about IT systems and
the intellectual property of the Customer and information about potential
vulnerabilities and methods of their exploitation. The report containing
confidential information can be used internally by the Customer, or it can be
disclosed publicly after all vulnerabilities are fixed - upon a decision of the
Customer.

Abstract

In this report, we consider the security of the Jibrel contracts for Staking
protocol. Our task is to find and describe security issues in the smart
contracts of the platform. This report presents the findings of the security
audit of Customer’s smart contracts conducted between March 10th, 2021
- March 16th, 2021.

Post-audit validation provided on March, 17-18th, 2021.

Disclaimer

The audit does not give any warranties on the security of the code. One
audit can not be considered enough. We always recommend proceeding
with several independent audits and a public bug bounty program to
ensure the security of smart contracts. Besides, security audits are not
investment advice.

Scope

The scope of the audit is the “staking-protocol” project at the main
branch with commit 1dd05f60e4a3feef937ccd86ea88bbf3ae73cfea.

Post-audit scope for validation includes a “staking-protocol” project at the
main branch with commit 4cf0554db2bb72d21a46c81216cc4fe4da9f9226.

1. StakingMilestones/IStakingMilestones.sol
2. StakingMilestones/StakingMilestones.sol
3. StakingMilestones/Vault.sol
4. StakingMilestones/YieldFarm.sol
5. StakingMilestones/YieldFarmLP.sol

We have scanned this smart contract for commonly known and more
specific vulnerabilities. Here are some of the commonly known

3

info@blaize.tech

vulnerabilities that are considered (the full list includes them but is not
limited to):

● Unsafe type inference;
● Timestamp Dependence;
● Reentrancy;
● Implicit visibility level;
● Gas Limit and Loops;
● Transaction-Ordering Dependence;
● Unchecked external call - Unchecked math;
● DoS with Block Gas Limit;
● DoS with (unexpected) Throw;
● Byte array vulnerabilities;
● Malicious libraries;
● Style guide violation;
● ERC20 API violation;
● Uninitialized state/storage/local variables;
● Compile version not fixed.

Procedure

In our report we checked the contract with the following parameters:

● Whether the contract is secure;
● Whether the contract corresponds to the documentation;
● Whether the contract meets best practices in efficient use of gas,

code readability;

We perform our audit according to the following procedure:

1. Automated analysis:
● Scanning contract by several public available automated

analysis tools such as Mythril, Solhint, Slither and Smartdec;
● Manual verification of all the issues found by tools.

2. Manual audit:
● Manual analysis of smart contracts for security vulnerabilities;
● Checking smart contract logic and comparing it with one

described in the documentation.

4

info@blaize.tech

Executive summary

According to the assessment, the Customer's smart contracts required
improvements; some functionality works semi-auto and do not follow best
practices. We described all the issues and added recommendations for the
Customer. Though, the Customer’s team has provided all necessary
improvements according to the Auditor’s recommendations. Most of the
issues were connected with the checks for constructor and initializers,
though they were implemented in the deployment script.

For the overall security of the smart-contracts system can not be evaluated
as sufficiently secure and has 97 out of 100.

Findings:

Found Fixed

Critical 0 0

High 1 1 (marked as resolved)

Medium 7 6 = 5 + 1 (marked as resolved)

Low 6 6 = 1 + 5 (marked as resolved)

Lowest 6 5 = 2 + 3 (marked as resolved)

The graph of vulnerabilities distribution:

5

info@blaize.tech

Severity Definition

Critical A system contains several issues ranked as very serious
and dangerous for users and the secure work of the
system. Needs immediate improvements and further
checking.

High A system contains a couple of serious issues, which
lead to unreliable work of the system and might cause
a huge information or financial leak. Needs immediate
improvements and further checking.

Medium A system contains issues which may lead to medium
financial loss or users’ private information leak. Needs
immediate improvements and further checking.

Low A system contains several risks ranked as relatively
small with the low impact on the users’ information
and financial security. Needs improvements.

6

info@blaize.tech

Lowest A system does not contain any issue critical to the
secure work of the system, yet is relevant for best
software defensive practices implementations.

AS-IS overview

StakingMilestones contract overview
StakingMilestones contract inherits from the
ReentrancyGuardUpgradeSafe and OwnableUpgradeSafe contracts.
Initialize function sets Unix timestamp.

● From Initializable
○ isConstructor() (private)

● From ContextUpgradeSafe
○ __Context_init() (internal)
○ __Context_init_unchained() (internal)
○ _msgData() (internal)
○ _msgSender() (internal)

● From OwnableUpgradeSafe
○ __Ownable_init() (internal)
○ __Ownable_init_unchained() (internal)
○ owner() (public)
○ renounceOwnership() (public)
○ transferOwnership(address) (public)

● From ReentrancyGuardUpgradeSafe
○ __ReentrancyGuard_init() (internal)
○ __ReentrancyGuard_init_unchained() (internal)

● Native functions
o initialize(uint256, uint256) (public) - sets Unix timestamp and

initializes ReentrancyGuardUpgradeSafe and
OwnableUpgradeSafe

o deposit(address, uint256) (public) - deposits a certain amount
of tokens to the StakingMilestones contract; stores new
balance. Executes the epoch logic

o withdraw(address, uint256) (public) - withdraws a certain
amount of tokens to the sender; stores new balance. Executes
the epoch logic

o manualEpochInit(address[], uint128) (public) - initializes the
current and next epoch.

7

info@blaize.tech

o emergencyWithdraw(address) (public) - withdraws a total
balance of tokens to the sender; stores new balance.

o getEpochUserBalance(address, address, uint128) → uint256
(public) - returns the valid balance of a user that was taken into
consideration in the total pool size for the epoch

o balanceOf(address, address) → uint256 (public) - returns the
amount of tokens that the user has currently staked

o getCurrentEpoch() → uint128 (public) - returns the id of the
current epoch derived from block.timestamp

o getEpochPoolSize(address, uint128) → uint256 (public) - returns
the total amount of tokens that was locked from beginning to
end of epoch identified by `epochId`

o currentEpochMultiplier() → uint128 (public) - returns the
percentage of time left in the current epoch

o computeNewMultiplier(uint256, uint128, uint256, uint128) →
uint128 (public) - returns computed `NewMultiplier`

o epochIsInitialized(address, uint128) → bool (public) - checks if an
epoch is initialized, meaning we have a pool size set for it

o getCheckpointBalance(StakingMilestones.Checkpoint) →
uint256 (internal) - returns checkpoint balance

o getCheckpointEffectiveBalance(StakingMilestones.Checkpoint
) → uint256 (internal) - returns checkpoint effective balance

Vault contract overview
Inherits from the OwnableUpgradeSafe. Initializing function sets slice
address.

● From Initializable
o - isConstructor() (private)

● From ContextUpgradeSafe
o - __Context_init() (internal)
o - __Context_init_unchained() (internal)
o - _msgData() (internal)
o - _msgSender() (internal)

● From OwnableUpgradeSafe
o __Ownable_init() (internal)
o __Ownable_init_unchained() (internal)
o owner() (public)
o renounceOwnership() (public)
o transferOwnership(address) (public)

● Native functions

8

info@blaize.tech

o setAllowance(address, uint256) (public) - Sets amount as the
allowance of spender over the caller’s tokens

o constructor(address) (public) - sets slice address

YieldFarm contract overview
Inherits from the OwnableUpgradeSafe.

● From Initializable
o isConstructor() (private)

● From ContextUpgradeSafe
o __Context_init() (internal)
o __Context_init_unchained() (internal)
o _msgData() (internal)
o _msgSender() (internal)

● From OwnableUpgradeSafe
o __Ownable_init() (internal)
o __Ownable_init_unchained() (internal)
o owner() (public)
o renounceOwnership() (public)
o transferOwnership(address) (public)

● Native functions
o initialize(address,address,address,address,uint256)(public) -

sets Ownable, sliceAddress, stakableToken,
totalRewardInEpoch, stackContract, vault, epochStart,
epochDuration

o setTotalRewardInParticularEpoch(uint128,uint256)(external) -
sets total reward in particular epoch

o massHarvest() → uint256 (external) - method to harvest all the
unharvested epochs until current epoch - 1

o harvest(uint128) → uint256 (external) - credits the sender with
Reward and returns the amount Reward

o getPoolSize(uint128) → uint256 (external) - calls to the staking
smart contract to retrieve the epoch total pool size

o getCurrentEpoch() → uint256 (external) - calls to the staking
smart contract to retrieve the current epoch id

o getEpochStake(address,uint128) → uint256 (external) - calls to
the staking smart contract to retrieve user balance for an
epoch

9

info@blaize.tech

o userLastEpochIdHarvested() → uint256 (external) - returns user
last Epoch Id Harvested

o getTotalAccruedRewards(address) → uint256 (external) - gets
total accrued rewards

o _initEpoch(uint128) (internal) - sets epoch Id

o _harvest(uint128) → uint256 (internal) -returns the amount of
reward

o _getPoolSize(uint128) → uint256 (internal) - returns the pool size

o _getUserBalancePerEpoch(address,uint128) → uint256 (internal)
- returns the user balance per epoch

o _getEpochId() → uint128 (internal) - returns the epoch id

YieldFarmLP contract overview
Inherits from the OwnableUpgradeSafe.

● From Initializable
o isConstructor() (private)

● From ContextUpgradeSafe
o __Context_init() (internal)
o __Context_init_unchained() (internal)
o _msgData() (internal)
o _msgSender() (internal)

● From OwnableUpgradeSafe
o __Ownable_init() (internal)
o __Ownable_init_unchained() (internal)
o owner() (public)
o renounceOwnership() (public)
o transferOwnership(address) (public)

● Native functions
o initialize(address,address,address,address,uint256)(public) -

sets Ownable, sliceAddress, stakableToken,
totalRewardInEpoch, stackContract, vault, epochStart,
epochDuration

o addStakableToken(address, uint) (external) - adds a stackable
token contract address, along with its weight

o removeStakableToken(address) (external) - removes a
stackable token contract address, along with its weight

10

info@blaize.tech

o setTotalRewardInParticularEpoch(uint128,uint256)(external) -
sets total reward in particular epoch

o massHarvest() → uint256 (external) - method to harvest all the
unharvested epochs until current epoch - 1

o harvest(uint128) → uint256 (external) - credits the sender with
Reward and returns the amount Reward

o getPoolSize(uint128) → uint256 (external) - calls to the staking
smart contract to retrieve the epoch total pool size

o getCurrentEpoch() → uint256 (external) - calls to the staking
smart contract to retrieve the current epoch id

o getEpochStake(address,uint128) → uint256 (external) - calls to
the staking smart contract to retrieve user balance for an
epoch

o userLastEpochIdHarvested() → uint256 (external) - returns user
last Epoch Id Harvested

o getTotalAccruedRewards(address) → uint256 (external) - gets
total accrued rewards

o _initEpoch(uint128) (internal) - sets epoch Id

o _harvest(uint128) → uint256 (internal) -returns the amount of
reward

o _getPoolSize(uint128) → uint256 (internal) - returns the pool size

o _getUserBalancePerEpoch(address,uint128) → uint256 (internal)
- returns the user balance per epoch

o _getEpochId() → uint128 (internal) - returns the epoch id

Audit overview

Critical

No critical issues detected.

High

1. StakingMilestones.sol. No restrictions for staked token addresses

Evidence: Contract functionality does not contain any restrictions

11

info@blaize.tech

about tokens to be used in deposit/withdraw functionalities (and
other connected with staking). There are no checks if token is
allowed to be staked, or registry of supported tokens, etc. And there
is no clear documentation if all possible tokens are allowed or there
are restrictions.

Recommendation: Check the rules of tokens participation in staking
or implement the “supported tokens” functionality with appropriate
checks in crucial places.

Resolution: Marked as resolved after the discussion with the Client.
Comment: The check was purposely skipped because it is performed
in YieldFarm. If someone does stake a token which is not stakeable in
YieldFarm it won't fetch the user rewards and he/she can withdraw
their tokens from StakingMilestones whenever they want.

Medium

1. Vault.sol, 21. Use safeERC20 for transfers and approvals

Evidence: Vault.setAllowance()

Recommendation: Change approve() to safeApprove().

Resolution: Fixed by the Client.

2. StakingMilestones.sol. Use safeERC20 for transfers and approvals

Evidence:
StakingMilestones.deposit()
StakingMilestones.withdraw()
StakingMilestones.emergencyWithdraw()

Recommendation: Change transfer() to safeTransfer(),
transferFrom() to safeTransferFrom().

Resolution: Fixed by the Client.

12

info@blaize.tech

3. YieldFarm.sol. Use safeERC20 for transfers and approvals

Evidence:
YieldFarm.massHarvest()
YieldFarm.harvest()

Recommendation: Change transfer() to safeTransfer(),
transferFrom() to safeTransferFrom().

Resolution: Fixed by the Client.

4. YieldFarmLP.sol. Use safeERC20 for transfers and approvals

Evidence:
YieldFarmLP.massHarvest()
YieldFarmLP.harvest()

Recommendation: Change transfer() to safeTransfer(),
transferFrom() to safeTransferFrom().

Resolution: Fixed by the Client.

5. StakingMilestones.sol, 263. Add nonReentrant for
emergencyWithdraw()

Evidence: Add nonReentrant modifier for emergencyWithdraw()
method. It is low risk of reentrant attack, though, since there is no
checks for the supported tokens and to keep the same system with
deposit() and withdraw() we recommend to add the check.

Recommendation: Add nonReentrant modifier for
emergencyWithdraw() method.

13

info@blaize.tech

Resolution: Fixed by the Client.

6. YieldFarmLP.sol, 71 addStakableToken() method also allows you to
remove a token.

Evidence: There is no check for 0 value AND for 0 address passed into
the method. It can cause incorrect irrevertible storage changes.
Since additional irrevertible changes are made in the storage and
consequences solution requires a lot of gas to be performed, this is
marked as medium

Recommendation: Add require() statement to check 0 value and/or
0 address passed.

7. StakingMilestones.sol, 53 check for 0 value.

Evidence: There is no check for 0 in initialize function. It has low risk
in general, since initialization can be performed only by the owner.
Though, since there is no way to change the value and the value
participates in division it is better to reduce the risk of zero division.

Recommendation: Add require() statement to check 0 value.

Resolution: Marked as resolved after the discussion with the Client.
Comment: After the discussion with the Client, set up that the value
is checked in the deployment script.

Low

1. Vault.sol. Missing documentation

Evidence: Vault.sol methods do not have proper documentation
neither in Doxygen format within the code nor in the separate
Readme

Recommendation: Add documentation for the Vault contract
methods.

14

info@blaize.tech

2. StakingMilestones.sol, 78 Possible revert in deposit().

Evidence: deposit() method calls to manualEpochInit() in case if the
epoch is uninitialized. Also, manualEpochInit() reverts if previous
epoch is uninitialized. Though, there can be more than 1 epoch
uninitialized. In this case the user will get the reverted deposit()
transaction with no clear error, so it is not clear that he will need to
initialize several epochs as well.

Recommendation: Add error message, that more than 1 epoch is
uninitialized and check the functionality if it is acceptable (user gets
an error and needs to initialize several epochs manually).

Resolution: Marked as resolved after the discussion with the Client.
Comment: The check was purposely skipped following the
established model and userflow. Initialization is required for every
epoch either manually or by regular deposit/withdraw. Current
behavior is acceptable.

3. YieldFarm.sol, 53; YieldFarmLP.sol, 58
Check for the correct slice address.

Evidence: YieldFarm.sol and YieldFarmLP.sol initializer() methods get
slice address and vault address as arguments, though check for
correct slice address (crucial value in Vault.sol) is missing.

Recommendation: Add require() statement to check that slice is the
same as the value kept in the vault.

Resolution: Marked as resolved after the discussion with the Client.
Comment: After the discussion with the Client, set up that the value
is checked in the deployment script.

4. YieldFarm.sol, 72 Not optimal failure point.

Evidence: YieldFarm.sol massHarvest() has inappropriate statement
to check the epoch is greater than 0 and the transaction will fail with
inappropriate error.

15

info@blaize.tech

Recommendation: Add require() statement to check that epoch is
greater than 0.

Resolution: Marked as resolved after the discussion with the Client.

5. YieldFarm.sol, 182 Not optimal calculation.

Evidence: YieldFarm.sol getTotalAccruedRewardsForToken() has
overcomplicated calculation.

Expression
((_staking.getEpochUserBalance(userAddress, token,
epochId)).mul(weightOfStakableToken[token])).div(100)

can be encapsulated into a separate function to simplify the
calculation.
The same applies to _getUserBalancePerEpoch().
Also, check the calculation correctness based on:

Recommendation: Refactor the calculation as mentioned.

Resolution: Marked as resolved after the discussion with the Client.
Comment: Calculation is confirmed by the Client.

6. YieldFarm.sol, 85 Unneeded variable.

Evidence: YieldFarm.sol removeStakableToken() has a variable which
can be reduced. Variable index is used for storage of i value. The first
cycle can have a break statement instead of index assignment, so
the second cycle can use i instead of index.

16

info@blaize.tech

Recommendation: Refactor the calculation as mentioned.

Resolution: Fixed by the Client.

Lowest

Informational statements

1. Vault.sol. Missing check for 0 address.

Evidence: Both constructor() and setAllowance() methods do not
have checks for 0 address. Since both methods can be called only
from the contracts owner there is no risk, though missing check may
lead to the error from the deployer/owner side.

Recommendation: Add checks for 0 address for both methods.

Resolution: Marked as resolved after the discussion with the Client.
Comment: After the discussion with the Client, set up that the value
is checked in the deployment script.

2. YieldFarm.sol, 45. Missing check for 0 address.

Evidence: initialize() method do not have checks for 0 address for
vault address.

Recommendation: Add checks for 0 address for initializer.

Resolution: Marked as resolved after the discussion with the Client.
Comment: After the discussion with the Client, set up that the value
is checked in the deployment script.

3. YieldFarmLP.sol, 51. Missing check for 0 address.

Evidence: initialize() method do not have checks for 0 address for
vault address.

Recommendation: Add checks for 0 address for initializer.

Resolution: Marked as resolved after the discussion with the Client.
Comment: After the discussion with the Client, set up that the value

17

info@blaize.tech

is checked in the deployment script.

4. Methods should be marked as external.

Evidence: from the automatic tool output

Recommendation: mark methods as external

Resolution: Fixed by the Client.

5. StakingMilestones.sol, 264 “Magical” number.

Evidence: emergencyWithdraw() method contains require()
statement which refers to undocumented number “10”.

Recommendation: Add a constant and proper documentation for
the unreferenced number.

6. YieldFarmLP.sol, 85 Unnecessary statement.

Evidence: removeStakableToken() method contains an extra delete
statement which can be reduced to simple 0 (or 0 address)
assignment with some gas savings.
delete weightOfStakableToken[_tokenAddress]
delete stakableToken[j]

Recommendation: Replace delete with 0 (or 0 address) assignment.

Resolution: Fixed by the Client.

18

info@blaize.tech

Unit Test Coverage

All present tests can be successfully run. Nevertheless, the non-standard
approach for test writing does not allow to check the test coverage in an
automatic way, so manual review for tests coverage was applied. The
Auditor’s team has considered that the project has sufficient test coverage.

Conclusion

According to the audit the contract was manually reviewed and analyzed
with static analysis tools. The Audit team has found some high, medium
and low issues during the analysis. Though, all issues were fixed by the
Customer’s team following Auditor’s recommendations. Most of the issues
were connected with the checks for constructor and initializers, though
they were implemented in the deployment script. Due to the foundings
and fixes, the contracts system can be marked as secure.

The overall security of the smart-contracts system can be evaluated as 97
out of 100.

Audit report contains all necessary information related to it as well as
recommendations for their elimination.

19

