

info@blaize.tech

Table of Contents

Table of Contents 2

Abstract 3

Disclaimer 3

Scope 3

Procedure 4

Executive summary 5

Severity Definition 6

AS-IS overview 7
JCompound contract overview 7
JCompoundStorage contract overview 9
JTrancheAToken contract overview 9
JTrancheBToken contract overview 11
JTranchesDeployer contract overview 12
TransferETHHelper contract overview 13

Audit overview 13
Critical 13
High 13
Medium 13
Low 15
Lowest 16
Unit Test Coverage 17

Conclusion 17

2

info@blaize.tech

This document may contain confidential information about IT systems and
the intellectual property of the Customer and information about potential
vulnerabilities and methods of their exploitation. The report containing
confidential information can be used internally by the Customer, or it can be
disclosed publicly after all vulnerabilities are fixed - upon a decision of the
Customer.

Abstract

In this report, we consider the security of the Jibrel contracts for Tranche
Compound protocol. Our task is to find and describe security issues in the
smart contracts of the platform. This report presents the findings of the
security audit of Customer’s smart contracts conducted between March
15th, 2021 - March 23d, 2021.

Post-audit validation provided on March, 29th, 2021.

Disclaimer

The audit does not give any warranties on the security of the code. One
audit can not be considered enough. We always recommend proceeding
with several independent audits and a public bug bounty program to
ensure the security of smart contracts. Besides, security audits are not
investment advice.

Scope

The scope of the audit is the “tranche-compound-protocol” project at the
main branch with commit 28527d04cf5521b1147f99d156b3f1d2361f128c.

Post-audit scope for validation includes a “tranche-compound-protocol”
project at the main branch with commit
8fd21f4c973805c47c0fbb8d625957ef891a60f7.

1. ICErc20.sol
2. ICEth.sol
3. IJCompound.sol
4. IJPriceOracle.sol
5. IJTranchesDeployer.sol
6. IJTrancheTokens.sol
7. JCompound.sol
8. JCompoundStorage.sol

3

info@blaize.tech

9. JTrancheAToken.sol
10. JTrancheBToken.sol
11. JTranchesDeployer.sol
12. TransferETHHelper.sol

We have scanned this smart contract for commonly known and more
specific vulnerabilities. Here are some of the commonly known
vulnerabilities that are considered (the full list includes them but is not
limited to):

● Unsafe type inference;
● Timestamp Dependence;
● Reentrancy;
● Implicit visibility level;
● Gas Limit and Loops;
● Transaction-Ordering Dependence;
● Unchecked external call - Unchecked math;
● DoS with Block Gas Limit;
● DoS with (unexpected) Throw;
● Byte array vulnerabilities;
● Malicious libraries;
● Style guide violation;
● ERC20 API violation;
● Uninitialized state/storage/local variables;
● Compile version not fixed.

Procedure

In our report we checked the contract with the following parameters:

● Whether the contract is secure;
● Whether the contract corresponds to the documentation;
● Whether the contract meets best practices in efficient use of gas,

code readability;

We perform our audit according to the following procedure:

1. Automated analysis:
● Scanning contract by several public available automated

analysis tools such as Mythril, Solhint, Slither and Smartdec;
● Manual verification of all the issues found by tools.

4

info@blaize.tech

2. Manual audit:
● Manual analysis of smart contracts for security vulnerabilities;
● Checking smart contract logic and comparing it with one

described in the documentation.

Executive summary

According to the assessment, the Customer's smart contracts required
improvements; some functionality works semi-auto and do not follow best
practices. We described all the issues and added recommendations for the
Customer. Most of the issues found refer to code quality, missing checks
and extra code. Though, the Customer’s team has provided all necessary
improvements according to the Auditor’s recommendations.

For the overall security of the smart-contracts system can be evaluated as
having good security and has 99 out of 100.

Findings:

Found Fixed

Critical 0 0

High 0 0

Medium 4 4

Low 2 2

Lowest 3 3

The graph of vulnerabilities distribution:

5

info@blaize.tech

Severity Definition

Critical A system contains several issues ranked as very serious
and dangerous for users and the secure work of the
system. Needs immediate improvements and further
checking.

High A system contains a couple of serious issues, which
lead to unreliable work of the system and might cause
a huge information or financial leak. Needs immediate
improvements and further checking.

Medium A system contains issues which may lead to medium
financial loss or users’ private information leak. Needs
immediate improvements and further checking.

Low A system contains several risks ranked as relatively
small with the low impact on the users’ information
and financial security. Needs improvements.

Lowest A system does not contain any issue critical to the
secure work of the system, yet is relevant for best

6

info@blaize.tech

software defensive practices implementations.

AS-IS overview

JCompound contract overview
JCompound contract inherits from the OwnableUpgradeSafe,
JCompoundStorage and IJCompound contracts.

From Initializable

○ isConstructor() (private)
● From ContextUpgradeSafe

○ __Context_init() (internal)
○ __Context_init_unchained() (internal)
○ _msgData() (internal)
○ _msgSender() (internal)

● From OwnableUpgradeSafe
○ __Ownable_init() (internal)
○ __Ownable_init_unchained() (internal)
○ owner() (public)
○ renounceOwnership() (public)
○ transferOwnership(address) (public)

● Native functions
o initialize(address,address,address) (public) - sets price oracle

address, fees collector address, tranches deployer address
o fallback() (external) - this is needed to receive ETH when calling

redeemCEth function
o receive() (external) - this is needed to receive ETH when calling

redeemCEth function
o setBlocksPerYear(uint256) (external) - sets how many blocks

will be produced per year on the blockchain
o setCEtherContract(address) (external) - sets relationship

between ethers and the corresponding Compound cETH
contract

o setCTokenContract(address, address) (external) - sets
relationship between a token and the corresponding
Compound cToken contract

o isCTokenAllowed(address) -> bool (public) - checks if a cToken
is allowed or not

o getCompoundPercentagePerTranche(uint256) -> uint256
(external) - gets percentage from compound

7

info@blaize.tech

o setDecimals(uint256, uint8, uint8) (external) - checks if a
cToken is allowed or not

o setTrancheRedemptionPercentage(uint256, uint16) (external) -
sets tranche redemption percentage

o setTrancheAFixedPercentage(uint256, uint256) (external) - sets
tranche redemption percentage

o setRedemptionTimeout(uint32) (external) - sets redemption
timeout

o addTrancheToProtocol(address,string,string,string,string,uint25
6,uint8,uint8) (external) - adds tranche in the protocol

o sendErc20ToCompound(address,uint256) -> uint256 (internal) -
sends an amount of tokens to corresponding compound
contract (it takes tokens from this contract). Only allowed
token should be sent

o redeemCErc20Tokens(address,uint256,bool) -> uint256
(internal) - redeems an amount of cTokens to have back
original tokens (tokens remain in this contract). Only allowed
token should be sent

o redeemCEth(uint256, bool) -> uint256 (internal) - redeems
cETH from compound contract (ethers remain in this contract)

o getCEthExchangeRate() -> uint256 (public) - gets cETH
exchange rate from compound contract

o getCTokenExchangeRate(address) -> uint256 (public) - gets
cToken exchange rate from compound contract

o getMantissa(uint256) -> uint256 (public) - gets tranche
mantissa

o getCompoundPrice(uint256) -> uint256 (public) - gets
compound price for a single tranche

o setTrancheAExchangeRate(uint256) ->uint256 (public) - sets
Tranche A exchange rate

o getTrancheAExchangeRate(uint256) -> uint256 (public) - gets
Tranche A exchange rate

o getTrancheACurrentRPB(uint256) -> uint256 (public) - gets
RPB for a given percentage (expressed in 1e18)

o calcRPBFromPercentage(uint256) -> uint256 (public) - gets
Tranche A exchange rate

o getTrAValue(uint256) -> uint256 (public) - gets Tranche A value
o getTrBValue(uint256) -> uint256 (external) - gets Tranche B

value
o getTotalValue(uint256) -> uint256 (public) - gets Tranche total

value

8

info@blaize.tech

o getTrancheBExchangeRate(uint256, uint256) -> uint256
(public) - gets Tranche B exchange rate

o buyTrancheAToken(uint256, uint256) (external) - buys Tranche
A Tokens

o redeemTrancheAToken(uint256, uint256) (external) - redeems
Tranche A Tokens

o buyTrancheBToken(uint256, uint256) (external) - buys Tranche
B Tokens

o redeemTrancheBToken(uint256, uint256) external - redeems
Tranche B Tokens

o redeemCTokenAmount(uint256, uint256) (external) - redeems
every cToken amount and send values to fees collector

o getTokenBalance(address) -> uint256 (public) - gets every
token balance in this contract

o getEthBalance() -> uint256 (public) - gets eth balance on this
contract

o transferTokenToOwner(address, uint256) (external) - transfers
tokens in this contract to owner address

o withdrawEthToOwner(uint256) (external) - transfers ethers in
this contract to owner address

JCompoundStorage contract overview
Inherits from the OwnableUpgradeSafe.

From Initializable

o - isConstructor() (private)
● From ContextUpgradeSafe

o - __Context_init() (internal)
o - __Context_init_unchained() (internal)
o - _msgData() (internal)
o - _msgSender() (internal)

● From OwnableUpgradeSafe
o __Ownable_init() (internal)
o __Ownable_init_unchained() (internal)
o owner() (public)
o renounceOwnership() (public)
o transferOwnership(address) (public)

JTrancheAToken contract overview
Inherits from the OwnableUpgradeSafe, ERC20UpgradeSafe,
AccessControlUpgradeSafe, IJTrancheTokens.

9

info@blaize.tech

● From Initializable
o isConstructor() (private)

● From ContextUpgradeSafe
o __Context_init() (internal)
o __Context_init_unchained() (internal)
o _msgData() (internal)
o _msgSender() (internal)

● From OwnableUpgradeSafe
o __Ownable_init() (internal)
o __Ownable_init_unchained() (internal)
o owner() (public)
o renounceOwnership() (public)
o transferOwnership(address) (public)

● From AccessControlUpgradeSafe
o __AccessControl_init() (internal)
o __AccessControl_init_unchained() (internal)
o hasRole(bytes32,address) (public)
o getRoleMemberCount(bytes32) (public)
o getRoleMember(bytes32,uint256) (public)
o getRoleAdmin(bytes32) (public)
o grantRole(bytes32,address) (public)
o revokeRole(bytes32,address) (public)
o renounceRole(bytes32,address) (public)
o _setupRole(bytes32,address) (internal)
o _setRoleAdmin(bytes32,bytes32) (internal)
o _grantRole(bytes32,address) (private)
o _revokeRole(bytes32,address) (private)

● From ERC20UpgradeSafe
o __ERC20_init(string,string) (internal)
o __ERC20_init_unchained(string,string) (internal)
o name() (public)
o symbol() (public)
o decimals() (public)
o totalSupply() (public)
o balanceOf(address) (public)
o transfer(address,uint256) (public)
o allowance(address,address) (public)
o approve(address,uint256) (public)
o transferFrom(address,address,uint256) (public)
o increaseAllowance(address,uint256) (public)
o decreaseAllowance(address,uint256) (public)

10

info@blaize.tech

o _transfer(address,address,uint256) (internal)
o _mint(address,uint256) (internal)
o _burn(address,uint256) (internal)
o _approve(address,address,uint256) (internal)
o _setupDecimals(uint8) (internal)
o _beforeTokenTransfer(address,address,uint256) (internal)

● Native functions
o initialize(string, string) (public) - initializes

OwnableUpgradeSafe and ERC20UpgradeSafe and sets up the
minter role

o setJCompoundMinter(address) (external) - grants the minter
role to the specified account

o mint(address, uint256) (external) - mints tokens to an account
o burn(uint256) (external) - burns an amount of the token of a

given account

JTrancheBToken contract overview
Inherits from the OwnableUpgradeSafe, ERC20UpgradeSafe,
AccessControlUpgradeSafe, IJTrancheTokens.

● From Initializable
o isConstructor() (private)

● From ContextUpgradeSafe
o __Context_init() (internal)
o __Context_init_unchained() (internal)
o _msgData() (internal)
o _msgSender() (internal)

● From OwnableUpgradeSafe
o __Ownable_init() (internal)
o __Ownable_init_unchained() (internal)
o owner() (public)
o renounceOwnership() (public)
o transferOwnership(address) (public)

● From AccessControlUpgradeSafe
o __AccessControl_init() (internal)
o __AccessControl_init_unchained() (internal)
o hasRole(bytes32,address) (public)
o getRoleMemberCount(bytes32) (public)
o getRoleMember(bytes32,uint256) (public)
o getRoleAdmin(bytes32) (public)
o grantRole(bytes32,address) (public)
o revokeRole(bytes32,address) (public)

11

info@blaize.tech

o renounceRole(bytes32,address) (public)
o _setupRole(bytes32,address) (internal)
o _setRoleAdmin(bytes32,bytes32) (internal)
o _grantRole(bytes32,address) (private)
o _revokeRole(bytes32,address) (private)

● From ERC20UpgradeSafe
o __ERC20_init(string,string) (internal)
o __ERC20_init_unchained(string,string) (internal)
o name() (public)
o symbol() (public)
o decimals() (public)
o totalSupply() (public)
o balanceOf(address) (public)
o transfer(address,uint256) (public)
o allowance(address,address) (public)
o approve(address,uint256) (public)
o transferFrom(address,address,uint256) (public)
o increaseAllowance(address,uint256) (public)
o decreaseAllowance(address,uint256) (public)
o _transfer(address,address,uint256) (internal)
o _mint(address,uint256) (internal)
o _burn(address,uint256) (internal)
o _approve(address,address,uint256) (internal)
o _setupDecimals(uint8) (internal)
o _beforeTokenTransfer(address,address,uint256) (internal)

● Native functions
o initialize(string, string) (public) - initializes

OwnableUpgradeSafe and ERC20UpgradeSafe and sets up the
minter role

o setJCompoundMinter(address) (external) - grants the minter
role to the specified account

o mint(address, uint256) (external) - mints tokens to an account
o burn(uint256) (external) - burns an amount of the token of a

given account

JTranchesDeployer contract overview
Inherits from the OwnableUpgradeSafe and IJTranchesDeployer.

● From Initializable
o isConstructor() (private)

● From ContextUpgradeSafe
o __Context_init() (internal)

12

info@blaize.tech

o __Context_init_unchained() (internal)
o _msgData() (internal)
o _msgSender() (internal)

● From OwnableUpgradeSafe
o __Ownable_init() (internal)
o __Ownable_init_unchained() (internal)
o owner() (public)
o renounceOwnership() (public)
o transferOwnership(address) (public)

● Native functions
o initialize() (public)

o setJCompoundAddress(address) (public) - sets
`JCompoundAddress`

o deployNewTrancheATokens(string, string, address) -> address
(public) - deploys the JTrancheAToken

o deployNewTrancheBTokens(string, string, address) -> address
(public) - deploys the JTrancheBToken

TransferETHHelper contract overview
● Native functions

o safeTransferETH(address, uint256) (internal) - saves transfer eth
helper

Audit overview

Critical

No critical issues detected.

High

No critical issues detected.

Medium

1. JCompound.sol. Unused ownership.

Evidence: Contract is marked as Ownable though there is no
application of that functionality.

13

info@blaize.tech

Recommendation: Confirm that owner should not be checked in
onlyAdmins() modifier and remove inheritance from Ownable
contract.

Resolution: Fixed by the Client. Added environment change
functionality.

2. JCompound.sol. Missing checks.

Evidence: Functions setDecimals() and addTrancheToProtocol() have
no any checks regarding the correctness of decimals set in the
contract. The decimals number influences several functions:
getTrBValue(), getTrBValue(), getTotalValue(), getMantissa() (in the
places of calls). There can be an arithmetic error with overflow in
exponencial operation (10 ** decimals).

In general there is a low probability of mistake, but due to the fact,
that these functionality affects several places in the contract, that it
is overflow possibility, that there can be different number of decimals
(starting with standard USDT with 6 decimals, which can cause
errors in calculation) we recommend to check the math and add
security checks.

Also, all automatic tools we have used marked this issue as high. It is
added to the medium section only because of low probability of
error setup in admin’s method.

So we recommend adding checks, that
trancheParameters[_trancheNum].underlyingDecimals can never
be set higher than 18, and that after decimals setting getMantissa()
method will never return the number greater than 18.

Recommendation: Add security checks for the correct decimals
setup.

Resolution: Client has added appropriate security checks and
mantissa calculation fixes.

14

info@blaize.tech

3. JCompound.sol. Missing error message.

Evidence: locked() modifier has no error message in the required
statement. In general it is a low risk issue. Though it is a modifier that
acts as Reentrancy guard, so it has very high meaning for the system
and should reflect its own behavior with appropriate messages.
That’s why the issue is marked as medium.

Recommendation: Add error message.

Resolution: Fixed by the Client.

4. JCompound.sol. Unused storage variable.

Evidence: setCEtherContract() sets value of cEth contract twice - to
cEtherContract and cEthToken. Though cEtherContract is not used is
the contract set.

Recommendation: Remove unused variables.

Resolution: Fixed by the Client.

Low

1. JTrancheAToken.sol, JTrancheBToken.sol. Additional checks.

Evidence: mint() and burn() methods do not contain checks for zero
amount. It is a low probability of calling these methods with zero
amount, though such checks can prevent standard accidental
transactions with 0 amount, which will have no effect but cost gas.

Recommendation: Add checks for 0 amount.

Resolution: Fixed by the Client.

2. JCompound.sol. Incorrect naming and documentation.

Evidence: transferTokenToOwner() and withdrawEthToOwner()
names and docstrings state that these methods transfer funds to the

15

info@blaize.tech

contract’s owner. Though they transfer funds to the fee collector
address.

Recommendation: Correct naming and documentation and check
that the receiver is correct.

Resolution: Fixed by the Client.

Lowest

Informational statements

1. JTranchesDeployer.sol. Extra import.

Evidence: ICompound.sol and IERC20.sol are imported but never
used.

Recommendation: Remove unnecessary imports.

Resolution: Fixed by the Client.

2. JTrancheAToken.sol, JTrancheBToken.sol. Misleading
documentation.

Evidence: mint() and burn() methods contain misleading information
about pointsCorrection update.

Recommendation: Remove unnecessary imports.

Resolution: Fixed by the Client.

3. JCompound.sol. Magic number.

Evidence: redeemTrancheAToken() and redeemTrancheBToken()
methods contain “magic” number for precision - 10000. It will be
more obvious and safer for further development to move it into the
constant.

Recommendation: Move number to the constant.

Resolution: Fixed by the Client.

16

info@blaize.tech

Unit Test Coverage

All present tests can be successfully run. Nevertheless, the non-standard
approach for test writing does not allow to check the test coverage in an
automatic way, so manual review for tests coverage was applied. The
Auditor’s team has considered that the project has sufficient test coverage.

Conclusion

According to the audit the contract was manually reviewed and analyzed
with static analysis tools. The Audit team has found some medium and low
issues during the analysis. All issues should be fixed by the Customer’s
team following Auditor’s recommendations. Most of the issues found refer
to code quality, missing checks and extra code. Though, all issues were
fixed by the Customer’s team following Auditor’s recommendations. Due
to the foundings and fixes, the contracts system can be marked as secure.

The overall security of the smart-contracts system can be evaluated as 99
out of 100.

Audit report contains all necessary information related to it as well as
recommendations for their elimination.

17

