Blaize

Know the rules.

SMART CONTRACT
CODE REVIEW AND
SECURITY ANALYSIS

REPORT y
b
NS
7\
N AR
[AR X
MY 2R R S
(2 SR |

& ¢+ 9 nH

*
Know the . .
BI G | Ze rUles. Croate info@blaize.tech
new ones
Table of Contents
Table of Contents 2
Abstract 3
Disclaimer 3
Scope 3
Procedure 4
Executive summary 5
Severity Definition 6
AS-IS overview 6
JLoan contract overview o
JLoanHelper contract overview 10
JPriceOracle contract overview 12
JFeesCollector contract overview 13
TransferHelper (TransferETHHelper) contract overview 14
Audit overview 14
Critical 14
High 15
Medium 17
Low 19
Lowest 24
Unit Test Coverage 27
Conclusion 28

BI G i Ze mg;v g:gote info@blaize.tech

new ones

This document may contain confidential information about IT systems and
the intellectual property of the Customer and information about potential
vulnerabilities and methods of their exploitation. The report containing
confidential information can be used internally by the Customer, or it can be
disclosed publicly after all vulnerabilities are fixed - upon a decision of the
Customer.

In this report, we consider the security of the Jibrel contracts. Our task is
to find and describe security issues in the smart contracts of the platform.
This report presents the findings of the security audit of Customer's smart
contracts conducted between December 30th, 2020 - January 15th, 2021.

Post-audit validation provided on January, 21th, 2021.

The audit does not give any warranties on the security of the code. One
audit can not be considered enough. We always recommend proceeding
with several independent audits and a public bug bounty program to
ensure the security of smart contracts. Besides, security audits are not
investment advice.

The scope of the project is the whole “tranche-protocol” project at
commit aa9cf5b23e4b8fcb0b01d605219ff2ad09871aae.

Post-audit scope for validation includes a “tranche-protocol” project at
commit eb8f55c0bfeeaf3dee985ecf23cd40eble7a7c5a.

|IJLoanHelper.sol
|IJPriceOracle.sol
JFeesCollector.sol
JFeesCollector2.sol
JLoan.sol
JLoanHelper.sol
JLoanStorage.sol
JLoanStructs.sol

. JPriceOracle.sol
10. Migrations.sol

O®NO U A WN

M K th
BI G I Ze rur;Z\SA.ICrsote

new ones

1. myERC20.sol

12. TransferHelper.sol (TransferETHHelper.sol)
13. ITWAPOracle.sol

14. 1JFeesCollector.so

15. 1JLoan.sol

16. JFeesCollectorStorage.sol

17. JPriceOracleStorage.sol

18. OrFeedInterface.sol

We have scanned this smart contract for commmonly known and more
specific vulnerabilities. Here are some of the commonly known
vulnerabilities that are considered (the full list includes them but is not

limited to):

Unsafe type inference;

Timestamp Dependence;

Reentrancy;

Implicit visibility level;

Gas Limit and Loops;
Transaction-Ordering Dependence;
Unchecked external call - Unchecked math;
DoS with Block Gas Limit;

DoS with (unexpected) Throw;

Byte array vulnerabilities;

Malicious libraries;

Style guide violation;

ERC20 API violation;

Uninitialized state/storage/local variables;
Compile version not fixed.

Procedure

In our report we checked the contract with the following parameters:

We perform our audit according to the following procedure:

Whether the contract is secure;

Whether the contract corresponds to the documentation;
Whether the contract meets best practices in efficient use of gas,

code readability;

info@blaize.tech

BI q i Ze }rrlg\sN Ct:rr]:ote info@blaize.tech

new ones

1. Automated analysis:
e Scanning contract by several public available automated
analysis tools such as Mythril, Solhint, Slither and Smartdec;
e Manual verification of all the issues found by tools.
2. Manual audit:
e Manual analysis of smart contracts for security vulnerabilities;
e Checking smart contract logic and comparing it with one
described in the documentation.

Executive summary

According to the assessment, the Customer's smart contracts required
improvements; some functionality works semi-auto and do not follow best
practices. We described issues and added Customer comments according
to the conclusion of these documents. Though, the Customer’s team has
provided all necessary improvements according to the Auditor’s
recommendations.

So, the overall security of the smart-contracts system can be evaluated as
Highly Secure, 95 out of 100.

The graph of vulnerabilities distribution:

@ high medium low lowest

BI G i Ze L(L:}g;\/ Ct:rr]gote info@blaize.tech

new ones

Severity Definition

Medium A system contains issues which may lead to medium
financial loss or users’ private information leak. Needs
immediate improvements and further checking.

Low A system contains several risks ranked as relatively
small with the low impact on the users’ information
and financial security. Needs improvements.

Lowest A system does not contain any issue critical to the
secure work of the system, yet is relevant for best
software defensive practices implementations.

AS-IS overview

JLoan contract overview

JLoan contract inherits from the JLoanStorage and OpenZeppelin's
OwnableUpgrade contracts. Initialize function sets price oracle, fees
collector and loan helper contracts addresses.

e From Initializable

o isConstructor() (private)
e From ContextUpgradeSafe
__Context_init() (internal)
__Context_init_unchained() (internal)
_msgData() (internal)
_msgSender() (internal)
e From OwnableUpgradeSafe

o __Ownable_init() (internal)

o __Ownable_init_unchained|() (internal)

O O O O

BI G i Ze mg;v (t:r:gote info@blaize.tech

new ones

@)

o

o

owner() (public)
renounceOwnership() (public)
transferOwnership(address) (public)

e Native functions

O

updateVersion(uint256 _ver) (external) — updates
contractVersion variable

setEarlySettlementWindow(uint256 _value) (external) — setter
for generalLoansParams

setForeclosureWindow/(uint256 _value) (external) - setter for
generallLoansParams

setForeclosureRatio(uint8 _value) (external) - setter for
generallLoansParams

setinstantForeclosureRatio(uint8 _value) (external) - setter for
generalLoansParams

setRequiredCollateralRatio(uint8 _value) (external) - setter for
generallLoansParams

setFactoryFees(uint8 _value) (external) — setter for
generalLoanFees

setEarlySettlementFee(uint256 _value) (external) — setter for
generallLoanFees

setUserRewardShare(uint8 _value) (external) — setter for
generalLoanFees

setVaultShares(uint8 _value) (external) — setter for
generallLoanFees
setUndercollateralizedForeclosingMultiple(uintle _value)
(external) — setter for generalLoanFees
setAtRiskForeclosedMultiple(uintle _value) (external) — setter
for generalLoanFees

setCancellationFees(uint8 _value) (external) — setter for
generallLoanFees

getCollateralTokenAddress(uint256 _pairld) » address (public) —
read from price oracle

getLentTokenAddress(uint256 _pairld) » address (public) —
read from price oracle
getMinCollateralNoFeesAmount(uint256 _pairld, uint256
_askAmount) » uint256 (public) — calculation using
JLoanHelper

getMinCollateralWithFeesAmount(uint256 _pairld, uint256
_askAmount) » uint256 (public) — calculation using
JLoanHelper

BI G i Ze mgg (t:r:gote info@blaize.tech

new ones

o getMaxStableCoinNoFeesAmount(uint256 _pairld, uint256
_collAmount) » uint256 (public) — calculation using
JLoanHelper

o getMaxStableCoinWithFeesAmount(uint256 _pairld, uint256
_collAmount) » uint256 (public) — calculation using
JLoanHelper

o getCollFeesOnActivation(uint256 _collAmount) » uint256
(public) — calculation using JLoanHelper

o openNewlLoan(uint256 _pairld, uint256 _borrowedAskAmount,
uint256 _rpbRate) (external) — creates new loan, can receive
ETH and ERC20 token for the loan, increases loanld by 1.
getLoansCounter() » uint256 (external) — return loanld
getGeneralParams() » struct JLoanStructs.GeneralParams
(external) - return generalLoansParams

o getGeneralFees() » struct JLoanStructs.FeesParams (external)
-return generalLoanFees

o depositEthCollateral(uint256 _id) (external) —send ETH to the
contract, increase ETH collateral in the loan

o depositTokenCollateral(uint256 _id, address _tok, uint256
_amount) (external) - send token to the contract, increase
token collateral in the loan

o withdrawCollateral(uint256 _id, uint256 _amount) (external) —
withdraw collateral to the borrower

o getContractBalance(uint256 _id) » uint256 (external) — return
contract balance on a token or eth

o getLoanBalance(uint256 _id) » uint256 (public) - return
loanBalance[_id]

o getlLoanStatus(uint256 _id) » uint256 (external) - return
uint256(loanStatus[_id])

o setNewsStatus(uint256 _id, uint256 _newStatus) (external) - set
status for loan

o checklLoanlnEarlySettlementWindow(uint256 _id) -» bool
(external) — check if loan is in early settlement period

o checkEarlySettledLoan(uint256 _id) » bool (external) - check if
loan is in early settlement period

o setlnitalCollateralRatio(uint256 _id) (external) - set initial
collateral ratio of the loan

o getActualCollateralRatio(uint256 _id) » uint256 newCollRatio
(public) - get the collateral ratio of the loan (subtracting the
accrued interests)

BI G i Ze mgg (t:r:gote info@blaize.tech

new ones

o calcRatioAdjustingCollateral(uint256 _id, uint256 _amount,
bool _adding) » uint256 ratio (external) - calculation using
JLoanHelper

o calcDiffCollAmountForRatio(uint256 _id, uint256 _ratio) »
uint256 collDiff (public) - calculation using JLoanHelper

o lenderSendStableCoins(uint256 _id, address _stableAddr)
(external) - lender sends required stable coins to borrower

o setlLoanStatusOnCollRatio(uint256 _id) » uint256 (public) - set
the status of the loan based on collateral ratio

o initiateLoanForeclose(uint256 _id) (external) - set the loan in
foreclosure state for undercollateralized loans

o setlLoanForeclosing(uint256 _id) (internal) - set the loan in
foreclosure state and set loanForeclosingBlock to the current
block

o setlLoanToForeclosed(uint256 _id) » bool (external) - set the
loan in foreclosed state when foreclosureWindow time passed
or collateral ratio is at risk

o setlLoanForeclosed(uint256 _id) (internal) - set the loan in
foreclosure state

o loanEarlyClosing(uint256 _id) » uint256 (internal) - set the loan
in early closing state

o loanClosingByBorrower(uint256 _id) (external) - settle the loan
in normal closing state by borrower

o borrowerSendBacklLentToken(uint256 _id) (internal) - internal
function for borrower to send back lent tokens to shareholders

o setLoanClosed(uint256 _id) (internal) - set the loan in closed
state

o setLoanCancelled(uint256 _id) (external) - set the loan in
cancelled state (only if pending)

o calculatingAccruedinterests(uint256 _id, uint256 _calcBIk) -
uint256 (public) - calculate accrued interests of the contract

o getAccruedinterests(uint256 _id) » uint256 accruedinterests
(public) - get accrued interests of the contract

o withdrawlnterests(uint256 _id) » uint256 (public) - withdraw
accrued interests for all shareholders and set the status after
interests withdrawal

o withdrawlnterestsMassive(uint256(] _id) » bool success
(external) - withdraw accrued interests for a bunch of loans for
all shareholders and set the status after interests withdrawal

BI G i Ze mg;v (t:r:gote info@blaize.tech

new ones

shareholderWithdrawlInterests(uint256 _id, address
_shareholder, uint256 _accruedTotallnterests) (internal) -
withdraw accrued interests for a shareholder
isShareholder(uint256 _id, address _holder) » bool (public) -
check if an address is a shareholder
getShareholderPlace(uint256 _id, address _holder) » uint256
(public) - get a shareholder place in shareholders array
addLoanShareholders(uint256 _id, address _newShareholder,
uint256 _amount) » uint256 (public) - add shareholder in
shareholders arrays

addLoanShareholdersMassive(uint256 _id, address|]
_newShareholder, uint256[] _amount) » bool success (external)
- add array of the shareholders in shareholders arrays
addShareholderToMultipleLoans(uint256[] _ids, address
_newShareholder, uint256[] _amounts) » bool success
(external) - add one shareholder to multiple loans

getSHAddress(uint256,uint256) (public) - get shareholder
mapping based on shareholder number

safeTransferCollateralAmounts(uint256,uint256,uint256)
(internal) - transfers collateral

setContractsAddress(address,address,address) (external) - set
other contracts address

JLoanHelper contract overview

Inherits from the Ownable and IJLoanHelper.

e From Initializable

O

- isConstructor() (private)

e From ContextUpgradeSafe

o O O O

- _ Context_init() (internal)

- __Context_init_unchained|() (internal)
- _msgDatal() (internal)

- _msgSender() (internal)

e From OwnableUpgradeSafe

o O O O

O

__Ownable_init() (internal)
__Ownable_init_unchained() (internal)
owner() (public)
renounceOwnership() (public)
transferOwnership(address) (public)

e Native functions

10

BI G i Ze mg;v (t:r:gote info@blaize.tech

new ones

o adjustDecimalsCollateral(uint256,uint256,uint256) (public) -
adjust for decimals in tokens pair for collateral

o adjustDecimalsRatio(uint256,uint256,uint256) (internal) -
adjust for decimals in tokens pair for ratio

o calcMaxStableCoinAmount(uint256,uint256,uint8) (public) -
get the amount of stable coin that a borrower could receive in
front of a collateral amount

o calcMaxStableCoinWithFeesAmount(uint256,uint256,uint8,uin
t8) (external) - get the amount of stable coin that a borrower
could receive in front of a collateral amount with activation
fees

o calcMinCollateralAmount(uint256,uint256,uint8) (public) - get
the amount of collateral needed to have stable coin amount

o calcMinCollateralWithFeesAmount(uint256,uint256,uint8,uint8
) (public) - get the amount of collateral needed to have stable
coin amount, with fees

o calculateCollFeesOnActivation(uint256,uint8) (public) -
calculate fees on collateral amount

o collateralAdjustingRatio(uint256,uint256,uint256,uint256,bool)
(external) - calc a new ratio if collateral amount has added to
contract balance
constructor(address) (public) -
getCollateralRatio(uint256,uint256,uint256) (external) - get the
collateral ratio of the loan (subtracting the accrued interests)

o ratioDiffCollAmount(uint256,uint256,uint256,uint256) (external)
- calc how much collateral amount has to be added to have a
ratio

o roundDn(uint256,uint256,uint256) (internal) - divides and
mathematically incorrect rounds down

o roundUp(uint256,uint256,uint256) (internal) — divides and
mathematically incorrect rounds up

o calcAccruedinterests(uint256,uint256,uint256) (internal) -
calculate accrued interests of the contract

o calcActualCollateralRatio(uint256,uint256,uint256,uint256,uint2
56,uint256,uint256,uint256,uint256) (public) - get the collateral
ratio of the loan

o calcLoanStatusOnCollRatio(uint256,uint256,uint256,uint256,uin
1256,uint256,uint256,uint256,uint256,uint8,uint8) (external) - set
the status of the loan based on collateral ratio

o getAccruedinterests(uint256,uint256,uint256,uiNt256,uint256,uli
Nt256,uint256) (public) - get accrued interests of the loan

11

BI G i Ze mg;v (t:r:gote info@blaize.tech

new ones

JPriceOracle contract overview
Inherits from the OwnableUpgradeSafe and |JPriceOracle.

e From Initializable
o isConstructor() (private)
e From ContextUpgradeSafe
__Context_init() (internal)
__Context_init_unchained() (internal)
_msgData() (internal)
_msgSender() (internal)
e From OwnableUpgradeSafe
__Ownable_init() (internal)
__Ownable_init_unchained|() (internal)
owner() (public)
renounceOwnership() (public)
o transferOwnership(address) (public)
e Native functions
o _addAdmin(address) (internal) — add admin address
o _removeAdmin(address) (internal) — remove admin address
o addAdmin(address) (external) — add admin address
o getPairBaseAddress(uint256) (external) - get a pair base

O O O O

o O O O

address

o getPairBaseDecimals(uint256) (external) - get a pair base
decimals

o getPairCounter() (external) - get a pair counter

o getPairDecimals(uint256) (external) - get a pair decimals

o getPairName(uint256) (external) - get a pair name

o getPairQuoteAddress(uint256) (external) - get a pair quote
address

o getPairQuoteDecimals(uint256) (external) - get a pair quote
decimals

getPairValue(uint256) (external) - get a pair price

initialize() (public)

isAdmin(address) (public) — check if address is admin
removeAdmin(address) (external) - remove admin
renounceAdmin() (external) — renounce admin role
setBaseQuoteDecimals(uint256,uint8,uint8) (external) - set a
base and quote decimals for the specified pair

o setNewPair(string,uint256,uint8,address,uint8,address,uint8)
(external) - set a new pair

o O O O O O

12

BI G i Ze mg;v (t:r;gote info@blaize.tech

new ones

setPairValue(uint256,uint256,uint8) (external) - set a price for
the specified pair
updateVersion(uint256) (external) - update contract version

bytes32ToString(bytes32) (public) - helper, casts bytes32 to the
string

fixed_1() (public) - returns 10A24

getChainlinkDecimals(uint256) (public) - get latest decimals of
a single pair from chainlink

getChainlinkDescription(uint256) (public) - get latest
description of a single pair from chainlink

getChainlinkPrice(uint256) (public) - get latest price of a single
pair from chainlink

getLatestChainlinkPairinfo(uint256) (external) - get latest info
on single pair from chainlink

getOrFeedPrice(uint256,string,uint256) (public) - get price
from orFeed

getUniswapPrice(uint256,uint256) (public) - get price from
uniswap

getUniswapTimeWeightedAveragePrice(uint256,uint256)
(public) -get time weighted average price from uniswap

setExternalProviderParameters(uint256,address,uint8,bool)
(external) - set a chainlink parameters for the specified pair

setOrFeedAddress(address) (external) - set orFeed address

setUniswapRouterAddress(address) (external) - set uniswap
router address

JFeesCollector contract overview

Inherits from the OwnableUpgradeSafe

e From Initializable

©)

isConstructor() (private)

e From ContextUpgradeSafe

O O O O

__Context_init() (internal)
__Context_init_unchained() (internal)
_msgData() (internal)

_msgSender() (internal)

13

BI G i Ze mg;v Ct)?:ote info@blaize.tech

new ones

e From OwnableUpgradeSafe

O O O O

O

__Ownable_init() (internal)
__Ownable_init_unchained() (internal)
owner() (public)
renounceOwnership() (public)
transferOwnership(address) (public)

e Native functions

O

O

allowToken(address) (external) - add allowed token address
disallowToken(address) (external) - remove allowed token
address

ethWithdraw(uint256) (external) - withdraw eth amount
getEthBalance() (external) - get eth contract balance
getTokenBalance(address) (external) - get contract token
balance

initialize() (public)

isTokenAllowed(address) (public) - check if a token is already
allowed

receive() (external) — fallback, emits event EthReceived
updateVersion(uint256) (external) - update contract version
withdrawTokens(address,uint256) (external) - withdraw tokens
from the contract, checking if a token is already allowed

TransferHelper (TransferETHHelper) contract overview

e From TransferHelper (TransferETHHelper)
o safeApprove(address,address,uint256) (internal) — safe approve

helper

o safeTransfer(address,address,uint256) (internal) — safe transfer
helper

o safeTransferETH(address,uint256) (internal) — safe transfer eth
helper

o safeTransferFrom(address,address,address,uint256) (internal) —
safe transfer token from address helper

Audit overview

Critical

No critical issues detected.

14

Bl G i Ze mgg\/ g;sate info@blaize.tech

new ones

High

1. JLoanHelper.sol calcMaxStableCoinAmount(#117): subtraction
overflows if base decimals is less than quote decimals.

Evidence: Alternative branch (#116) with
baseDecimals.sub (quoteDecimals) always fails, because
baseDecimals is strictly less than quoteDecimals in this branch.

1 (_pairld, _collAmount, _requiredCollateralRatio)
price = i (priceOracleAddress) (_pairid);

pairDecimals = ((priceOracleAddress). (_pairId));
askAmount = (_collAmount ()i (price). ((_requiredCollateralRatio)), ** pairDecimals,
baseDecimals = t (I (priceOracleAddress).g (_pairld))
gquoteDecimals = ((priceOracleAddress). te (_pairId));
if (baseDecimals = quoteDecimals) {
diffBaseQuoteDecimals = baseDecimals. (quoteDecimals};
askamount = askAmount. (1o #= diffBaseQuoteDecimals). (5);
I else {
diffBaseQuoteDecimals = baseDecimals. (quoteDecimals)
askAmount = askAmount. (+* diffBaseQuoteDecimals). (5)
}

return askAmount;

Recommendation: replace baseDecimals.sub(quoteDecimals) with
quoteDecimals.sub(baseDecimals) in JLoanHelper.sol at line 117.

Resolution: Fixed by the Customer’s team.

2. JLoanHelper.sol roundup (#35)and rounddn (#48): round down
and round up are mathematically incorrect and roundbn always
revert on values such as (1, 10, O).

Evidence:

() numerator, denominator, precision)
_numerator = numerator (10 ** (precision (1)));
_quotient = ((numerator (denominator)). (5)). (10);

n _quotient;

[i numerator, , denominator, precision)
_numerator = numerator. (10 ** (precision. (1)));
_quotient = (_numerator.div(denominator).sub(5)).div(10);

'n _quotient;

Recommendation: rename functions to ceil() and floor() and rewrite
them as follows:

15

BI G i Ze ng\/ g:sate info@blaize.tech

new ones

roundUp(uint256 numerator, uint256 denominator, uint256 precision) a (uint256) {
uint256 _numerator numerator.mul (10 precision);
n denominator.sub(1l).add(_numerator).div(denominator);

roundDn(uint256 numerator, uint256 denominator, uint256 precision) ernal eturns (uint256) {
uint256 _numerator numerator.mul (1@ precision);
_numerator.div(denominator);

Resolution: Fixed by the Customer’'s team.

3. JLoan functions (#813,#513,#541,#422,#315,#297). Anybody can call
functions that change storage.

Evidence:

Recommendation: check that it's safe to allow arbitrary addresses to
call these functions and add necessary require () statements.

Resolution: Customer’s team has confirmed the correctness of the
logic.

4. TransferHelper.sol safeApprove () (#6) safeApprove() method in the
TransferHelper is vulnerable to the front running.

Evidence: It creates potential for an approved user to spend more
than the intended amount if call transferFrom() both before and
after the call to approve().

16

Bl G i Ze mgg\/ g;sate info@blaize.tech

new ones

token, to, value) {

(success, data) = token. (abi. (¢ 5)3, to, value));

require(success & (data.length = 0 || abi. (data, ())), 'TH APPROVE_FAILED');
}

Recommendation: OpenZeppelin’s safeERC20 wrapper should be
added instead of the TransferHelper.sol or add increaseipprove ()
and decreaseipprove () functionality.

Resolution: Fixed by the Customer’s team.

Medium

1. JLoan.sol setLoanStatusOnCollRatio () (#513) Event
LoanStatusChanged isemitted even if there is no status change.

Evidence:

{uint: _id)
newCollRatio = 1 {id);
5 oldStatus = (loanstatus[_id]);
if (oldStatus > 0 & oldStatus < %) {
if (newCollRatio = generalloansParams.foreclosingRatio) {
loanstatus[_id] = status(1);
loanForeclosingBlock[id] = @;
if (newCollRatio < generallLoansParams.foreclosingRatio 56 newCollRatif

oanStatus[_id] = (2);
se if (newCollRatio < generalloansParams.instantForeclosureRatio) {
loanStatus[_id] = Status(3);

if (oldStatus = 4) {

if (newCollRatio enerallLoansParams.foreclosingRatio) {
loanStatus[_id] (1);
loanForeclosingBlock[id] =

(_id, oldStatus, (loanStatus[_id]),
(loanStatus[_id]);

Recommendation: Restrict event emission.

Resolution: Fixed by the Customer’s team.

2. JLoanHelper.sol calcMinCollateralAmount (#78 and #81) and
calcMaxStableCoinAmount (#115 and #118). Vague documentation
and unclear, potentially unnecessary math.

17

BI G i Ze mgg\/ g;sate info@blaize.tech

new ones

Evidence:

if (baseDecimals = quoteDecimals) {
diffBaseQuoteDecimals = baseDecimals. (quoteDecimals);
minCollAmount = minCollAmount. (*+ diffBaseQuoteDecimals). {5);

diffBaseQuoteDecimals = quoteDecimals. (baseDecimals);
minCollAmount = minCollAmount.div(10 #* diffBaseQuoteDecimals). {5);

if (baseDecimals = quoteDecimals) {
diffBaseQuoteDecimals = baseDecimals. (quoteDecimals)
askAmount = askAmount. (10 #* diffBaseQuoteDecimals). (5);

} else {
5 diffBaseQuoteDecimals = baseDecimals. (quoteDecimals);
askAmount = askAmount. (10 #* diffBaseQuoteDecimals). (5);

Recommendation: check calculations and add documentation to
these methods.

Resolution: Customer’s team has confirmed the correctness of the
logic.

3. JPriceOracle.sol renounceAdmin (#75) and removeAdmin (#71).

It's possible to use these functions to leave the contract without any
admins.

Evidence:

(=55 account) e ' onlyAdmins {
(account);

() e onlyAdmins {
in{msg.sender);

, account)

it

. - el (
Admins[account] = :

account);

Recommendation: Check and decide if this functionality is
acceptable for you. If not then add a default admin address or check
that the last administrator will not be removed.

18

Bl G i Ze mgg\/ g;sate info@blaize.tech

new ones

Addition: Wrong admin removing require - there must be strictly
more than 1admin. In the initialize function admin added using
mapping, not addadmin function.

adminCounter = adminCounter.
Admins[account] =

mit (account);

_uniswapRouter, _orFeed)
OwnableUpgra) £
_Admins[msg

Recommendation: change require tothe require (adminCounter
> 1, "Cannot remove last admin");and use addAdmin function
for adding new admininthe initialize.

Resolution: Fixed by the Customer’s team.

Low

1. Redundant custom contracts.

Evidence:

TransferHelper. £ fer(collateralToken, _shareholder, interestsToSend);

i _amount) onlyOwner {
re(!fLock, "1 -

re(_amount <€ : (this).balance, "Not er
nsferHelper. -TH(msg.sender, _amount);
(_amount, block.number);

Addition: flock is still present in the following functions
(JFeesCollector):

19

BI G i Ze mgg\/ Ct)?:(]te info@blaize.tech

new ones

rnal onlyOwner f

c(_amount® < address().balance, "Not er h contract balance")
safeTransferETH(, _amountt®);
_amountT, .number);

ETHHelpe

_tokT, uint256 _amountT) ex 1L onlyOwner {

1ot allowed");
, _amountt);
.number);

Recommendation: You can use OpenZeppelin's safe ERC20
wrapper instead of the TransferHelper.sol. You can use
OpenZeppelin’s ReentrancyGuard instead of flock for the
non-reentrant functions.

Resolution: Fixed by the Customer’s team.

2. JPriceOracle (#133, #191, #201) Documentation discrepancies.

Evidence:
a. “price” must be changed to the “counter”

b. “decimals” must be changed to the “address”:

: X (_pairId) returns (
require(_pairId < pairCounter, "pair does not e 5")
return pairs[_pairId].baseAddress;

c. “decimals” must be changed to the “address™

20

Bl G i Ze mgg\/ ct:hr:gte info@blaize.tech

new ones

Recommendation: fix documentation commments.
Resolution: Fixed by the Customer’'s team.

3. JLoan.sol getLoansCounter (#272), getGeneralParams (#281),
getGeneralFees (#289), getLoanBalance (#375), getLoanStatus
(#383) There are redundant external getters for loanlid,
generallLoansParams, generalLoanFees, loanBalance[_id] and
loanStatus[_id] variables — they all are public, so getters are
generated automatically.

Evidence:

returns (
return loanId;

ams() ew returns (GeneralParams
return generalloansParams;

FeesParams generalLDanFees;

2 returns (FeesParams 1
return generallLoanFees;

FeesParams generalLoanFees;

(i returns (
return loanBalance[id];

loanBalance;

21

Bl G i Ze mgg\/ ct:hr:gte info@blaize.tech

new ones

(_id) « returns (

return (loanStatus[_id]);

(=» Status) pt loanStatus;

Recommendation: remove getters.
Resolution: Fixed by the Customer’s team.

4. JLoan.sol getContractBalance (#361),
checkLoanInEarlySettlementWindow (#401)and
checkEarlySettledLoan (#414) These getters are redundant, their
values can be calculated off-chain.

Evidence:

o (_id) e w returns ()
collateralToken = (loanPair[_id]);
if (collateralToken = ad (0))
return (this).balance;
lse
return - (collateralToken).

(_id) returns () q
lastEarlyBlock = loanActiveBlock[_id]. (generalloansParams.earlySettlementWindow);
if (block.number < lastEarlyBlock)
return
else
return

(_id) returns () {
return loanStatus[_id] = Status.earlyClosing;

22

BI G i Ze mgg\/ Ct)?:(]te info@blaize.tech

new ones

Recommendation: Check the necessity of these getters and remove
redundant ones.

Resolution: Customer’s team has confirmed the correctness of the
logic.

5. JPriceOracle.sol fixed 1 (#194) This function can be replaced with
the public constant variable for gas saving.

Evidence:

Recommendation: Replace this function with the public constant
variable.

Resolution: Fixed by the Customer’s team.

6. JPriceOracle.sol reciprocal (#218) assert is gas ineffective.

Evidence:

Recommendation: Change assert tothe require statement.

Resolution: Fixed by the Customer’s team.

7. Obfuscate tests’ system.

Evidence:
The system is designed in a way that tests are run on-by-one instead
of running the complete testset by a truffle test command.

23

Know the

*
BI G I Ze rules. Create info@blaize.tech

new ones

Recommendation: Truffle framework is the industry standard for the
contracts development and testing. And mixed environment,
non-standard interaction with the project may lead to the
obfuscation, impossibility of coverage verification and complicated
development.

We recommend you to rewrite tests to run them from the ‘truffle
test’ command and change your test script in the package.json.

Lowest
Informational statements

1. Functions should be declared external.

Evidence:

initialize() should be declared external:

- JFeesCollector.initialize() (JFeesCollector.sol#29-32)
initialize(address,address,address) should be declared external:

- Jloan.initialize(address,address,address) (JLoan.sol#29-51)
getMaxStableCoinNoFeesAmount(uint256,uint256) should be declared external:

- JlLoan.getMaxStableCoinNoFeesAmount(uint256,uint256) (JLoan.sol#207-209)
getMaxStableCoinWithFeesAmount(uint256,uint256) should be declared external:
| - JLoan.getMaxStableCoinWithFeesAmount(uint256,uint256) (JLoan.sol#217-219)
calcMinCollateralWithFeesAmount{uint256,uint256,uint8,uint8) should be declared external:

- JLoanHelper.calcMinCollateralWithFeesAmount(uint256,uint256,uint8,uint8) (JLoanHelper.sol#93-98)
initialize() should be declared external:
- JPriceOracle.initialize() (JPriceOracle.sol#39-43)

INFO:Detectors:
getSHAddress(uint256,uint256) should be declared external:

- JLoan.getSHAddress(uint256,uint256) (JLoan.sol#357-359)
calcMinCollateralWithFeesAmount(uint256,uint256,uint8,uint8) should be declared external:

- JLoanHelper.calcMinCollateralWithFeesAmount(uint256,uint256,uint8,uint8) (JLoanHelper.sol#95-103)

Recommendation: declare these functions as external.

Resolution: Fixed by the Customer’s team.

2. JPriceOracle.sol (#39-77) Documentation is missing.

Evidence:

24

Bl G i Ze mgg\/ ct:hr:gte info@blaize.tech

new ones

OwnableUpgradeSafe.
_Admins[msg.sender] =
contractversion = 1;

] G
require((msg.sender), "!A

(addz account)
dmins[account] =
it (account);

ig (. account)
_Admins[account] =
emit (account);

(account)
rn _Admins[account];

(= account)
e(account == (o)
e(! (account),

(account};

n{ account) : onlyAdmins {
(account);

() ide onlyAdmins
(msg.sender);

Recommendation: add documentation for each function.
Resolution: Fixed by the Customer’s team.

3. JLoan.sol initialize (#29), setForeclosureRatio (#87),
onlyAdmins (#53)and fallback (#58) Missing documentation.

Evidence:

_priceOracle, _feesCollector, _loanHelper)

25

BI G i Ze mgg\/ Ct)?:(]te info@blaize.tech

new ones

: (8 _value) Cern onlyAdmins {
generallLoansParams.foreclosingRatio = _value;

() 4

require((priceOracleAddress). (msg.sender), "!Admin");

<() exte 1

revert("ETH not accepted!");

Recommendation: add documentation.

Resolution: Fixed by the Customer’s team.
4. Redundant default files.
Evidence: Migrations.sol

Recommendation: You can remove Migrations.sol since it provides
no efforts for the project.

Resolution: Fixed by the Customer’s team.

5. Obfuscated project structure.

a. Evidence:
Contracts used only for testing in the same directory with
production smart contracts.

Recommendation: Move myERC20 and JFeesCollector2
contracts to the contracts/test directory.

b. Evidence:
INn the contracts/uniswap directory only the ITWAPOracle
contract is used in contracts.

26

BI G i Ze mg;v (t:?ggte info@blaize.tech

new ones

Recommendation: Move all the other contracts from the
contracts/uniswap directory to the contracts/mocks
directory and leave only contracts in use (ITWAPOracle.sol).

Resolution: Fixed by the Customer’'s team.

6. JLoan.sol (#/413) Documentation is missing.

Evidence:

function safeTransferCollateralAmounts(uint256 _id¥, uint: userReward?, uint256 _vaultReward) internal {

Resolution: Fixed by the Customer’s team.

Unit Test Coverage

The project test framework is obfuscated with a non-standard and purely
documented approach, where tests are running one-by-one instead of a
complete suite. Though all present tests can be successfully run.
Nevertheless, the non-standard approach does not allow to check the test
coverage in an automatic way, so manual review for tests coverage was
applied. The Auditor’'s team has considered that the project has sufficient
test coverage.

Conclusion

According to the audit the contract was manually reviewed and analyzed
with static analysis tools. The Audit team has found some high, medium
and low issues during the analysis. Though, all issues were fixed by the
Customer’s team following Auditor's recommendations. Nevertheless, the
custom non-standard approach for unit testing obfuscates the project
development in general and the audit process in particular.

The overall security of the smart-contracts system can be evaluated as
Highly Secure, 95 out of 100.

Audit report contains all necessary information related to it as well as
recommendations for their elimination.

27

