

 info@blaize.tech

Table of Contents

Table of Contents 2

Abstract 3

Scope 3

Executive summary 3

Severity Definition 4

Technical expertise overview 4
Critical 4
High 4
Medium 6
Low 7
Informational 8

Conclusion 9

2

 info@blaize.tech

This document may contain confidential information about IT systems and
the intellectual property of the Customer and information about potential
vulnerabilities and methods of their exploitation. The report containing
confidential information can be used internally by the Customer, or it can be
disclosed publicly after all vulnerabilities are fixed - upon a decision of the
Customer.

Abstract

In this report, we consider the general quality of the Jibrel project. Our task
is to perform manual code review and technical expertise over the project.
This report presents the findings of the analysis of Customer’s project
conducted between December 30th, 2020 - January 15th, 2021.

Post-audit validation provided on January, 19th, 2021.

Scope

The scope of the project is the whole “tranche-protocol” project at
commit aa9cf5b23e4b8fcb0b01d605219ff2ad09871aae.

Post-audit scope for validation includes “tranche-protocol” project at
commit 44ffcb35830a7a3182d1fd944f6a887c600b2eb0.

We have scanned this project for common development practices. Here
are some reviews we conducted (the full list includes them but is not
limited to):

● General code review
● Developer tools usage review
● Test coverage review
● Storage variables usage analysis
● Dependency review
● Gas cost analysis

Executive summary

According to the assessment, the Customer's smart contracts required
improvements; some functionality worked semi-auto and did not
follow best practices. We described issues and added recommendations

3

 info@blaize.tech

for their elimination. Also, the Customer’s team has provided all necessary
improvements according to the Auditor’s recommendations.

Severity Definition

Technical expertise overview

Critical

No critical issues detected.

High

1. Functions roundUp() and roundDn() in JLoanHelper.sol perform
incorrect calculations (JLoanHelper.sol, lines 35 and 48)

Evidence: These functions fail, for example, at value (4, 10, 0).

4

Critical A system contains several issues ranked as very serious
and dangerous for users and the secure work of the
system. Needs immediate improvements and further
checking.

High A system contains a couple of serious issues, which
lead to unreliable work of the system and might cause
a huge information or financial leak. Needs immediate
improvements and further checking.

Medium A system contains issues which may lead to medium
financial loss or users’ private information leak. Needs
immediate improvements and further checking.

Low A system contains several risks ranked as relatively
small with the low impact on the users’ information
and financial security. Needs improvements.

Informational A system does not contain any issue critical to the
secure work of the system, yet is relevant for best
software defensive practices implementations.

 info@blaize.tech

Recommendation: rename functions to ceil() and floor() and
rewrite them as follows:

Resolution: Fixed by the Customer’s team.

2. Incorrect calculations in JLoanHelper::calcMaxStableCoinAmount
as a result of copy-paste error.

Evidence: In else branch, baseDecimals.sub(quoteDecimals)
always fails, because baseDecimals is strictly less than
quoteDecimals in this branch:

Recommendation: replace baseDecimals.sub(quoteDecimals)
with quoteDecimals.sub(baseDecimals) in JLoanHelper.sol at line
117.

Resolution: Fixed by the Customer’s team.

5

 info@blaize.tech

Medium

1. fLock reentrancy guard is error-prone.

Evidence: fLock = true must always be at the beginning of the
function, and fLock = false always in the end. In
JLoan::initiateLoanForeclose there is a statement fLock =
false in the middle of the function (JLoan.sol, line 557). There is a
possibility for failure because of a function structure mistake in the
case of a return statement in the middle of a function.

Recommendation: use the Openzeppelin’s ReentrancyGuard or a
modifier like:

Resolution: Fixed by the Customer’s team.

2. JLoanStorage::loanInitiateForecloseBlock storage variable is
redundant (JLoanStorage.sol, line 56).

Evidence: It’s only set once and never used, though
loanForeclosingBlock is present in several blocks of the code.

Recommendation: remove or rename and reuse this variable.

Resolution: Fixed by the Customer’s team.

3. Possible numeric error in JLoan::loanEarlyClosing (JLoan.sol,
line 667)

Evidence: If lastInterestWithdrawalBlock[_id] != 0,
balanceRequested becomes

6

 info@blaize.tech

generalLoansParams.earlySettlementWindow -

blockAlreadyUsed - blockAlreadyUsed. Double subtraction of the
same value.

Recommendation: check calculations and make computations more
clear, for example:

Resolution: Fixed by the Customer’s team.

Low

1. Several tests are incorrect.

Evidence: Tests “borrower1 can send collateral to set loan0
back in active state, but not enough Eth” in both
JLoansForeclosedByRatio.test.js (line 89) and
JLoansForeclosedByTime.test.js (line 89) check if one can send
more ether than he has on balance, which always fails.

Recommendation: rewrite these tests in a way where a test sends
less ether than is expected by the contract.

Informational

Code style issues

7

 info@blaize.tech

1. In JLoan.sol, line 403:
The block:

can be replaced with:

Informational statements

1. Migrations.sol and 1_initial_migration.js files are never used
and should be removed.

Resolution: Fixed by the Customer’s team.

2. Typo in JLoan.sol, line 272: “conuter” instead of “counter”.
Typo in JLoan.sol, line 474: “stabl” instead of “stable”.

Resolution: Fixed by the Customer’s team.

3. Several checks in tests are redundant. The common form is:

expect(tx.receipt.transactionHash).to.match(/0x[0-9a-fA-F]{64}/);

They are always true and only obfuscate the code.

Resolution: Fixed by the Customer’s team.

4. Every developer’s environment is different. This can make every
action harder to reproduce between machines. Consider removing
package-lock.json (and yarn.lock) from gitignore. With these
files in git, every developer in the team will have the same dev
environment, which can save a lot of time.

Resolution: Fixed by the Customer’s team.

8

 info@blaize.tech

5. Contract flattening is never used in the project. In spite of files
flatten.sh and flatten.bat, there is no dist folder in gitignore.
Though, the contents of the dist folder are never used.

Recommendation: add dist folder to gitignore, and consider
removing flattening altogether and replace it with
@resolver-engine/imports-fs and @resolver-engine/imports
libraries, which can be used to publish source code on Etherscan
more reliably.

6. Redundant logs in tests. The statement gasUsed * gasPrice is
logged in several tests. These logs only contribute to code
obfuscation. Gas price changes constantly, so these logged tx costs
won’t be helpful. Consider removing these logs.

Resolution: Fixed by the Customer’s team.

7. Storage variables can be reordered by accident. There is a warning in
JLoanStorage.sol which notifies about the danger of re-ordering.
But if someone adds a variable to GeneralParams or FeesParams
structs, it will shift storage, because structs are stored by value.
Consider adding a warning to never reorder variables to
GeneralParams and FeesParams structs.

Resolution: Fixed by the Customer’s team.

Conclusion

According to the technical analysis contracts were manually reviewed
against common development practices. The team has found some
high-level and medium-level issues during the analysis and the report
contains all necessary information related to them as well as
recommendations for issues’ elimination. Though, all critical issues were
resolved by the Customer’s team.

9

