
1INCH limit order
SMART CONTRACT

AUDIT

November 5th, 2021 / v.	1.0

1inch Limit Order Smart Contact Audit

1info@blaze.tech

Table of

 Contents
Audit rating 2

Technical summary 4

The graph of vulnerabilities distribution 5

Severity Definition 6

Auditing strategy and Techniques applied \ Procedure 7

Executive summary 8

Complete​ Analysis 9

Code coverage and test results for all files 20

Disclaimer 24

Test coverage results 23

1inch Limit Order Smart Contact Audit

2info@blaze.tech

The 1inch Limit Order
smart contract’s
source code was
taken from one
repository provided
by the 1inch team.

SCORE 10/10

audit

 rating

The scope of the project is Limit Order set of contracts:

AmountCalculator.sol
1/

ChainlinkCalculator.sol
2/

ERC721Proxy.sol
3/

ERC721ProxySafe.sol
4/

ERC1155Proxy.sol5/

ImmutableOwner.sol6/

NonceManager.sol7/

PredicateHelper.sol8/

ArgumentsDecoder.sol9/

Permitable.sol 10/

RevertReasonParser.sol11/

LimitOrderProtocol.sol12/

https://github.com/1inch/limit-order-protocol

1inch Limit Order Smart Contact Audit

3info@blaze.tech

OrderMixin.sol13/

OrderRFQMixin.sol14/

The scope of the audit is the code at the main branch with commit:

https://github.com/1inch/limit-order-protocol/commit/

568e0718eaabd932e6ff5c8395702a5d48dadd68

Post-audit scope for validation includes the code at the main
branch with
 commit:

https://github.com/1inch/limit-order-protocol/commit/

568e0718eaabd932e6ff5c8395702a5d48dadd68

1inch Limit Order Smart Contact Audit

4info@blaze.tech

Technical

 summary

Testable code

In this report, we consider the security of the contracts for Limit
Order protocol. Our task is to find and describe security issues in
the smart contracts of the platform. This report presents the
findings of the security audit of 1inch Limit Order smart contracts
conducted between October 27th, 2021 - November 05th, 2021.

The testable code is 100%, which is above
the industry standard of 95%.

The scope of the audit includes the unit test coverage, that bases
on the smart contracts code, documentation and requirements
presented by the 1inch team. Coverage is calculated based on the
set of Truffle framework tests and scripts from additional testing
strategies. Though, in order to ensure a security of the contract
Blaize.Security team recommends the 1inch team put in place a
bug bounty program to encourage further and active analysis of
the smart contracts.

INDUSTRY STANDARD

your average

100%75%50%25%0%

1inch Limit Order Smart Contact Audit

5info@blaze.tech

Critical

High

Medium

Low

Lowest

0

0

0

6

3

FOUND

0

0

0

6

2

FIXED/VERIFIED

The table below shows the number of found issues
and their severity. A total of 9 problems were
found. 8 issues were fixed or verified by the 1inch
team.

33%

67%

The graph of
vulnerabilities
distribution:

lowest

LOW

1inch Limit Order Smart Contact Audit

6info@blaze.tech

Severity Definition

A system contains several issues ranked as very
serious
 and dangerous for users and the secure 
work of the
 system. Needs immediate 
improvements and further
 checking.

Critical

A system contains a couple of serious issues, which 
lead to unreliable work of the system and migh 
cause
 a huge information or financial leak. Needs
immediate improvements and further checking.

High

A system contains issues which may lead to
mediumfinancial loss or users’ private information
leak. Needs
 immediate improvements and further
checking.

Medium

A system contains several risks ranked as relatively 
small with the low impact on the users’ information 
and financial security. Needs improvements.

Low

A system does not contain any issue critical to the 
secure work of the system, yet is relevant for best

Lowest

1inch Limit Order Smart Contact Audit

7info@blaze.tech

Auditing strategyand
Techniques applied \ Procedure

In our report we checked the contract with the following parameters:

Procedure

Whether the contract is secure;

Whether the contract corresponds to the documentation;

Whether the contract meets best practices in efficient use of gas,
code readability;

We have scanned this smart contract for commonly known and
more specific vulnerabilities:

Unsafe type inference;

Timestamp Dependence;

Reentrancy;

Implicit visibility level;

Gas Limit and Loops;

Transaction-Ordering
Dependence;

Unchecked external call -
Unchecked math;

DoS with Block Gas Limit;

DoS with (unexpected) Throw;

Byte array vulnerabilities;

Malicious libraries;

Style guide violation;

ERC20 API violation;

Uninitialized state/storage/ 
local variables;

Compile version not fixed.

Automated analysis:

Scanning contract by several public available automated analysis
tools such as Mythril, Solhint, Slither and Smartdec. Manual
verification of all the issues found with tools.

Manual audit:

Manual analysis of smart contracts for security vulnerabilities.
Checking smart contract logic and comparing it with the one
described in the documentation.

1inch Limit Order Smart Contact Audit

8info@blaze.tech

Executive

 summary

According to the assessment, the Customer's smart
contracts have no critical security problems. All unclear or
suspicious functionality was verified with 1inch team and
with addtional tests. Several places require more detailed
comments about the actions performed, since part of
security is performed on the side of the dApp. Nevertheless,
overall quality of the code is high and the functionality is
well-documented and optimized. We described issues and
added Customer’s comments
 according to the conclusion of
these documents. Please read the whole

document to estimate the risks well.

Security

Gas usage and logic optimization

Code quality

Test coverage

Total

9.8

10

9.6

10

9.9

RATING

1inch Limit Order Smart Contact Audit

9info@blaze.tech

Complete​ Analysis

OrderMix.sol, line 256 and 276, fillOrderTo()

Consider usage of safeTransfer for the tokens which do not inherit
IERC20 and do not implement canonical interface (like USDT)

Use safeTransfer functionality for unvalidated tokens

Use safeTransfer operations.

Recommendation:

Security verified both with the 1inch team and with additional tests.

Post-audit:

low Verified

OrderMix.sol, fillOrderTo()

The function provides unreasonable subtraction and addition of 1
to the remainingMakerAmount (thus to the _remaining[orderHash]).

Verify the functionality and provide the appropriate comment.

Unclear functionality

Verify the functionality and provide the appropriate comment.

Recommendation:

Functionality verified with 1inch team - it serves for filled orders
distinguishing. Nevertheless, it is recommended to add comments
to all places with such arithmetical operations.

Post-audit:

low Verified

1inch Limit Order Smart Contact Audit

10info@blaze.tech

OrderRFQMixin.sol, OrderRFQ structure, info field.

The contract utilizes uint256 type for the order.info field. Though,
throughout the contract, the highest 128 bit are not used:

- lowest 64 bits for the order if (8 lowest bits - shift for the invalidator
bit, 56 bits - order slot)

- next 64 bits for the expiration number

- 128 unused bits

In order to go further in gas optimisation (since we already have
packing into the number by bits shifts) uint128 may be used.

The same can be considered for the _invalidator[address]
[invalidatorSlot] since invalidatorSlot occupies 64 bits, but uint256 is
used.

Better choice for the type

Consider another type usage for the storage decreasing.

Recommendation:

After the conversation with the 1inch team and additional checks
the functionality is verified as storage-efficient.

Post-audit:

low Verified

1inch Limit Order Smart Contact Audit

11info@blaze.tech

OrderMixin contract inherits NonceManager functionality. Though
its storage (nonce mapping) and connected functions are not used
throughout the code. It seems that these storage and functions are
supposed to be used by external sources or directly from the app.
Though, “nonce” keyword and all connected functions have
unclear usage in the LimitOrder contract and may mislead users or
developers.

Nevertheless, since this functionality has no connection to
LimitOrder functionality it is recommended to separate it into
another contract. Thus it will decrease the contracts size and
remove the unclarified functionality.

Unused and unconnected storage

Remove unused storage and functionality (unused inheritance) or
verify the usage of the functionality.

Recommendation:

Functionality was verified with 1inch team as integrated for gas-
optimisation purpose.

Post-audit:

low Verified

1inch Limit Order Smart Contact Audit

12info@blaze.tech

OrderMix.sol, line 179, fillOrderToWithPermit()

OrderMix.sol, line 209, fillOrderTo()

There is a lack of checks to prevent double permit. Or there is a
possibility of a missed duplicated permit for makerAsset or
takerAsset, since there is no sign of which token is permitted in both
situations.

Duplicate permit possibility

Verify the functionality or prevent double permission in order to
provide gas savings.

Recommendation:

Security verified both with the 1inch team and with additional tests.

Post-audit:

low Verified

OrderMixin.sol and OrderRFQMixin.sol, allowedSender field of
structures.

allowedSender field is used in checks against 0 address and
msg.sender, but it is not stored anywhere in the contract and can
be sent as any value, since all participation functions are public.
Thus, the usage of this field and checks against it are useless,
unless this field is complexly included from the dApp. Though, since
any value can be sent and it is not connected with other
functionality, there is no need in its usage from smart contracts
point of view.

Unused structure field

Remove unused structure field or verify its usage.

Recommendation:

Security verified both with the 1inch team and with additional tests.

Post-audit:

low Verified

1inch Limit Order Smart Contact Audit

13info@blaze.tech

OrderMix.sol, line 179, fillOrderToWithPermit()

OrderMix.sol, line 209, fillOrderTo()

The function for the order fulfillment has the check against
reentrancy and there is no sense to give permit for the tokens other
than makerAsset and takerAsset. Though, since there are a lot of
known cases of exploits through fake tokens and since the
verification of the security of the code against all such attacks
needs a round of fuzzy testing and edge cases testing, it is
recommended to prevent the usage of unchecked token’s
contracts. Or at least provide all necessary security checks, such
as the check, that ony makerAsset and takerAsset can be used for
permits.

Since the chance of such an exploit is very low and possible impact
is very low the issue is marked as info. But because of the
complexity of proof that such an exploit is impossible, the issue
cannot be omitted.

Missing security check

Add security checks for the token contract verification.

Recommendation:

The functionality was verified with the 1inch team.

Post-audit:

LOWEST Verified

1inch Limit Order Smart Contact Audit

14info@blaze.tech

OrderMix.sol, line 223, fillOrderTo()

(takingAmount == 0) == (makingAmount == 0)

Use boolean operations instead of direct comparison.

Avoid direct bool comparison

Use boolean operations instead of direct comparison.

Recommendation:

LOwEST Unresolved

Functionality from ChainlinkCalculator.sol inherited in OrderMixin
contract is not used throughout the code. Looks like it is needed for
the further development or for the aggregated calls from the
frontend app. Remove the inheritance in order to decrease the
contract’s size or verify the usage in further development.

Unused functionality

Remove unused inheritance (into the separate contract, for
example) or verify the functionality is needed in the contract.

Recommendation:

Functionality was verified with 1inch team as integrated for gas-
optimisation purpose.

Post-audit:

LOwEST Verified

1inch Limit Order Smart Contact Audit

15info@blaze.tech

Re-entrancy

Arithmetic Over/Under Flows

Access Management Hierarchy

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Delegatecall Unexpected Ether

Hidden Malicious Code

Default Public Visibility

External Contract Referencing

Entropy Illusion (Lack of Randomness)

Unchecked CALL Return Values

Short Address/ Parameter Attack

Race Conditions / Front Running

Signatures Replay

Tx.Origin Authentication

Pool Asset Security (backdoors in the
underlying ERC-20)

General Denial Of Service (DOS)

Floating Points and Precision

Uninitialized Storage Pointers

Chainlink

Calculator

Amount

Calculator

ERC721Proxy

1inch Limit Order Smart Contact Audit

16info@blaze.tech

Re-entrancy

Arithmetic Over/Under Flows

Access Management Hierarchy

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Delegatecall Unexpected Ether

Hidden Malicious Code

Default Public Visibility

External Contract Referencing

Entropy Illusion (Lack of Randomness)

Unchecked CALL Return Values

Short Address/ Parameter Attack

Race Conditions / Front Running

Signatures Replay

Tx.Origin Authentication

Pool Asset Security (backdoors in the
underlying ERC-20)

General Denial Of Service (DOS)

Floating Points and Precision

Uninitialized Storage Pointers

ERC1155Proxy
ERC721ProxySafe Immutable
Owner

1inch Limit Order Smart Contact Audit

17info@blaze.tech

Re-entrancy

Arithmetic Over/Under Flows

Access Management Hierarchy

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Delegatecall Unexpected Ether

Hidden Malicious Code

Default Public Visibility

External Contract Referencing

Entropy Illusion (Lack of Randomness)

Unchecked CALL Return Values

Short Address/ Parameter Attack

Race Conditions / Front Running

Signatures Replay

Tx.Origin Authentication

Pool Asset Security (backdoors in the
underlying ERC-20)

General Denial Of Service (DOS)

Floating Points and Precision

Uninitialized Storage Pointers

PredicateHelper
NonceManager Arguments
Decoder

1inch Limit Order Smart Contact Audit

18info@blaze.tech

Re-entrancy

Arithmetic Over/Under Flows

Access Management Hierarchy

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Delegatecall Unexpected Ether

Hidden Malicious Code

Default Public Visibility

External Contract Referencing

Entropy Illusion (Lack of Randomness)

Unchecked CALL Return Values

Short Address/ Parameter Attack

Race Conditions / Front Running

Signatures Replay

Tx.Origin Authentication

Pool Asset Security (backdoors in the
underlying ERC-20)

General Denial Of Service (DOS)

Floating Points and Precision

Uninitialized Storage Pointers

RevertReason
Parser

Permitable LimitOrder
Protocol

1inch Limit Order Smart Contact Audit

19info@blaze.tech

Re-entrancy

Arithmetic Over/Under Flows

Access Management Hierarchy

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Delegatecall Unexpected Ether

Hidden Malicious Code

Default Public Visibility

External Contract Referencing

Entropy Illusion (Lack of Randomness)

Unchecked CALL Return Values

Short Address/ Parameter Attack

Race Conditions / Front Running

Signatures Replay

Tx.Origin Authentication

Pool Asset Security (backdoors in the
underlying ERC-20)

General Denial Of Service (DOS)

Floating Points and Precision

Uninitialized Storage Pointers

OrderRFQMixinOrderMixin

20info@blaze.tech

Code coverage and test
results for all files

Contract: LimitOrderProtocol

swap fully on signature
should swap fully based on RFQ signature
should swap half based on signature
should floor maker amount
should ceil taker amount
should fail on floor maker amount = 0
should fail with 0 amount
should not swap with bad signature
should not swap with bad signature RFQ
should not fill (1,1)
should not fill below threshold
should fail when both amounts are zero
should fail when both amounts are not zero
with OrderRFQ
should fail when amount in hash order lower
than ordered
order without getTakerAmount
order without getMakerAmount
should fail with wrong maker amount in
order without getTakerAmount
should fail with wrong taker amount in order
without getMakerAmount
should fail with too high taking amount in
order without getMakerAmount
usdt taker test
usdt maker test

1inch Limit Order Smart Contact Audit

Wield Smart Contact Audit

21info@blaze.tech

fillOrderToWithPermit function test
DAI => WETH
DAI => WETH with permit in order
rejects reused signature
fillOrderRFQToWithPermit
DAI => WETH
rejects expired permit
Order Cancelation
should cancel own order
should not cancel foreign order
OrderRFQ Cancellation
should cancel own order
should not fill cancelled order
Private Orders
should fill with correct taker
should not fill with incorrect taker
should not fill with incorrect taker RFQ
Predicate
òr ̀should pass
òr ̀should fail
nonce + ts example
advance nonce
ànd ̀should fail
Expiration
should fill when not expired
should not fill when expired
should fill RFQ order when not expired
should partial fill RFQ order
should fully fill RFQ order
should not partial fill RFQ order when 0
should not fill RFQ order when expired
should fill partially if not enough coins (taker)
should fill partially if not enough coins
(maker)

22info@blaze.tech

Interaction
should fill and unwrap token
Simulate call
simulate simple function
simulate failed transaction
should fail with parameters length mismatch
Remaining
should faik when checking remaining for unknown
order
check remaining for single order
check remaining for multiple orders

Wield Smart Contact Audit

1inch Limit Order Smart Contact Audit

23info@blaze.tech

FILE

OrderMixin.sol

OrderRFQMixin.sol

All files

100.00

100.00

% STMTS

100

90

100

% BRANCH

92.5

100.00

100.00

% FUNCS

100

Test

coverage

results

1inch Limit Order Smart Contact Audit

24info@blaze.tech

Disclaimer
The information presented in this report is an intellectual property
of the customer including all presented documentation, code
databases, labels, titles, ways of usage as well as the information
about potential vulnerabilities and methods of their exploitation.
This audit report does not give any warranties on the absolute
security of the code. Blaize.Security is not responsible for how you
use this product and does not constitute any investment advice.

Blaize.Security does not provide any warranty that the working
product will be compatible with any software, system, protocol or
service and operate without interruption. We do not claim the
investigated product is able to meet your or anyone else
requirements and be fully secure, complete, accurate and free of
any errors and code inconsistency.

We are not responsible for all subsequent changes, deletions and
relocations of the code within the contracts that are the subjects
of this report.

You should perceive Blaize.Security as a tool which helps to
investigate and detect the weaknesses and vulnerable parts that
may accelerate the technology improvements and faster error
elimination.

