
Cryptobear

SMART CONTRACT AUDIT

January 18th, 2022 / v.	1.0

CryptoBear Smart Contact Audit

1info@blaze.tech

Table of

 Contents
Audit rating 2

Technical summary 3

The graph of vulnerabilities distribution 4

Severity Definition 5

Auditing strategy and Techniques applied \ Procedure 6

Executive summary 7

Complete​ Analysis 8

Code coverage and test results for all files 13

Disclaimer 16

Test coverage results 15

CryptoBear Smart Contact Audit

2info@blaze.tech

The CryptoBear smart

contract’s source

code was taken from

the files provided by

the CryptoBear team

SCORE 9.8/10

audit

 rating

The scope of the project is CryptoBear set of contracts:

CryptoBearWatchClub
1/

Arkouda
2/

Arkouda.sol primary SHA256:

A81591B0A9F9AF9733CE5DE5DF178042C83702B86FF80E208A5A2AD

AF22179BA

CryptoBearsWatchClub.sol primary SHA256:

596533943DB54397E5F625A0A5CF6CFE52F698BB26DF330AF41836C

020013C25

Arkouda.sol last SHA256:

348A999C4CF24B8A0371E48AE0FC9BF2CFEFD8C426DA43C019F2FA

12955ADFC3

CryptoBearsWatchClub.sol last SHA256:

9B6C677F2899DA5F8D670D60AA1694499700142C509E790C658473D

64A80C492

CryptoBear Smart Contact Audit

3info@blaze.tech

Technical

 summary

Testable code

In this report, we consider the security of the contracts for
CryptoBear protocol. Our task is to find and describe security
issues in the smart contracts of the platform. This report presents
the findings of the security audit of CryptoBear smart contracts
conducted between January 13th, 2022 - January 18th, 2022.

The testable code is 98.11%, which is
above the industry standard of 95%.

The scope of the audit includes the unit test coverage, that bases
on the smart contracts code, documentation and requirements
presented by the CryptoBear team. Coverage is calculated based
on the set of Truffle framework tests and scripts from additional
testing strategies. Though, in order to ensure a security of the
contract Blaize.Security team recommends the CryptoBear team
put in place a bug bounty program to encourage further and
active analysis of the smart contracts.

INDUSTRY STANDARD

your average

100%75%50%25%0%

CryptoBear Smart Contact Audit

4info@blaze.tech

Critical

High

Medium

Low

Lowest

1

0

2

2

4

FOUND

1

0

2

2

3

FIXED/VERIFIED

The table below shows the number of found issues
and their severity. A total of 9 problems were
found. 8 issues were fixed or verified by the
CryptoBear team.

33%

45%

9%

23%
23%

The graph of
vulnerabilities
distribution:

critical

medium

low

LOWest

CryptoBear Smart Contact Audit

5info@blaze.tech

Severity Definition

A system contains several issues ranked as very
serious
 and dangerous for users and the secure 
work of the
 system. Needs immediate 
improvements and further
 checking.

Critical

A system contains a couple of serious issues, which 
lead to unreliable work of the system and migh 
cause
 a huge information or financial leak. Needs
immediate improvements and further checking.

High

A system contains issues which may lead to
mediumfinancial loss or users’ private information
leak. Needs
 immediate improvements and further
checking.

Medium

A system contains several risks ranked as relatively 
small with the low impact on the users’ information 
and financial security. Needs improvements.

Low

A system does not contain any issue critical to the 
secure work of the system, yet is relevant for best

Lowest

CryptoBear Smart Contact Audit

6info@blaze.tech

Auditing strategyand
Techniques applied \ Procedure

In our report we checked the contract with the following parameters:

Procedure

Whether the contract is secure;

Whether the contract corresponds to the documentation;

Whether the contract meets best practices in efficient use of gas,
code readability;

We have scanned this smart contract for commonly known and
more specific vulnerabilities:

Unsafe type inference;

Timestamp Dependence;

Reentrancy;

Implicit visibility level;

Gas Limit and Loops;

Transaction-Ordering
Dependence;

Unchecked external call -
Unchecked math;

DoS with Block Gas Limit;

DoS with (unexpected) Throw;

Byte array vulnerabilities;

Malicious libraries;

Style guide violation;

ERC20 API violation;

Uninitialized state/storage/ 
local variables;

Compile version not fixed.

Automated analysis:

Scanning contract by several public available automated analysis
tools such as Mythril, Solhint, Slither and Smartdec. Manual
verification of all the issues found with tools.

Manual audit:

Manual analysis of smart contracts for security vulnerabilities.
Checking smart contract logic and comparing it with the one
described in the documentation.

CryptoBear Smart Contact Audit

7info@blaze.tech

Executive

 summary

The contract contained critical issue connected to the incorrect
funds flow - it allowed user to claim rewards in spite of contract
rules. Though, the team has fixed the issue.  

All other issues were connected to missed checks, which may block
the contract, and code quality. Nevertheless, all security risk issues
were fixed by the team.  

The overall security is high enough though the code lacks of
readability and the overal quality may be increased. Nevertheless,
it performs all desired actions and has solid functionality.

Security

Gas usage and logic optimization

Code quality

Test coverage

Total

9.8

9.8

9.5

10

9.8

RATING

CryptoBear Smart Contact Audit

8info@blaze.tech

Complete​ Analysis

Arkouda::Line 98

There is a check if block.timestamp is greater than
rewardGenerationStarTtime but there is no check if
rewardGenerationStartime has been set. It can cause premature
rewards activation.

Lack of check

Add a suitable check.

Recommendation:

critical Resolved

CryptoBearWatchClub.sol::Line 118, 137

Auction cannot last more than 9300 seconds. After it, the price
deduction will become greater than the starting price that will
cause a math underflow of unsigned integer and revert.

Unheld exception

Handle this exception if it’s planned so, or remake the algorithm.

Recommendation:

medium Resolved

CryptoBear Smart Contact Audit

9info@blaze.tech

Arkouda.sol::Line 147

block.timestamp will never be less than
rewardGenerationStartTime so it will never trigger “return 0”.

Unreachable code

Remake the condition

Recommendation:

medium Resolved

Provided contracts use Solidity 0.8.0 which is not the actual version.

Versioning

Use stable (without ^) and the actual(0.8.11) version of Solidity.

Recommendation:

low Resolved

CryptoBearWatchClub.sol::Line 156, 207

There is no need to use additional memory to store msg.sender
address. It will cause gas loss.

Meaningless operation

Don’t store msg.sender in a variable.

Recommendation:

low Resolved

CryptoBear Smart Contact Audit

10info@blaze.tech

CryptoBearWatchClub.sol::Lines 31, 32

If a variable's state does not change in functionality - it can be
declared as constant to save gas on deployment.

Constants can be used

Use constant when the variable's state does not change.

Recommendation:

lowest Resolved

CryptoBearWatchClub.sol::Line 153.

Functionality of public sale returns user excess ETH if he sent more
than needed. But pre-sale does not return excess ETH. Even though
there is a functionality that allows the owner to collect excess ETH
it must be considered.

Sending back excess ETH

Check if excess ETH must NOT be sent back on pre-sale.

Recommendation:

lowest Resolved

CryptoBear Smart Contact Audit

11info@blaze.tech

CryptoBearWatchClub.sol::Lines 126, 127, 140, 141.

Better try to avoid using magic numbers and declare them as
constants to make the code more readable.

Magic numbers

Avoid using magic numbers declaring them as constants.

Recommendation:

lowest Resolved

Arkouda.sol::Lines 99

The functionality requires rewardPaused to be true, in the other
case it will revert with error “Reward claiming is turned off” that is a
logic issue.

Naming issue

Replace “rewardPaused” with “!rewardPaused”

Recommendation:

lowest Unresolved

CryptoBear Smart Contact Audit

12info@blaze.tech

Re-entrancy

Arithmetic Over/Under Flows

Access Management Hierarchy

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Delegatecall Unexpected Ether

Hidden Malicious Code

Default Public Visibility

External Contract Referencing

Entropy Illusion (Lack of Randomness)

Unchecked CALL Return Values

Short Address/ Parameter Attack

Race Conditions / Front Running

Signatures Replay

Tx.Origin Authentication

Pool Asset Security (backdoors in the
underlying ERC-20)

General Denial Of Service (DOS)

Floating Points and Precision

Uninitialized Storage Pointers

ArkoudaCryptoBearWatchClub

13info@blaze.tech

Code coverage and test
results for all files

Contract: CryptoBearWatchClub

mint NFT right after auction has started with
startingPrice 3 ETH (MAX PRICE) (1068ms)
mints NFT after 4500 seconds for a half price
(975ms)
mints NFT after 9000 seconds for a minimum
price (1252ms)
doesn't start sale when sale is not open (1041ms)
doesn't mint 0 NFT (192ms)
doesn't mint when sale is not open (175ms)
doesn't mint more than 3 NFT per mint (724ms)
doesn't mint when sufficient ETH is not sent (435ms)
doesn't mint more than maximum supply of
Crypto Bear Watch Club (475ms)

mints NFT for addresses from white list (merkle
tree) (874ms)
doesn't allow to start presale when presale is not
open (108ms)
mint NFT for addresses from white list (merkle tree)
after 9000 seconds with minimal price (859ms)
doesn't premint without merkle tree (113ms)
doesn't premint when presale is not open (253ms)
doesn't premint when sale is open (684ms)
doesn't premint more tokens per transaction than
maxMintAllowedPresale (697ms)
doesn't allow to premint when sufficient ETH
amount not sent (554ms)

CryptoBear Smart Contact Audit

CryptoBear Smart Contact Audit

14info@blaze.tech

transfer NFT (517ms)
safe transfer NFT (469ms)
withdrawAll (817ms)

Contract: Arkouda

changes reward allowance flag (127ms)
sets start time for reward generation (154ms)
sets reward amount for tokens by id (211ms)
sets allowed addresses for burning tokens (201ms)
claims available reward (1451ms)
claims no reward if sufficient time hasn't passed
(1150ms)
claims no reward when reward generation hasn't
started (1262ms)
gets total claimable amount (894ms)
doesn't call updateReward() from not CBWC
contract (116ms)
burns tokens from allowed accounts (1740ms)
doesn't update reward when NFT sent to zero
address (625ms)

CryptoBear Smart Contact Audit

15info@blaze.tech

FILE

Arkouda.sol

CryptoBearWatchClub.sol

All files

97.62

98.61

% STMTS

98.11

85

86.96

% BRANCH

85.98

100

95

% FUNCS

97.5

Test

coverage

results

CryptoBear Smart Contact Audit

16info@blaze.tech

Disclaimer
The information presented in this report is an intellectual property
of the customer including all presented documentation, code
databases, labels, titles, ways of usage as well as the information
about potential vulnerabilities and methods of their exploitation.
This audit report does not give any warranties on the absolute
security of the code. Blaize.Security is not responsible for how you
use this product and does not constitute any investment advice.

Blaize.Security does not provide any warranty that the working
product will be compatible with any software, system, protocol or
service and operate without interruption. We do not claim the
investigated product is able to meet your or anyone else
requirements and be fully secure, complete, accurate and free of
any errors and code inconsistency.

We are not responsible for all subsequent changes, deletions and
relocations of the code within the contracts that are the subjects
of this report.

You should perceive Blaize.Security as a tool which helps to
investigate and detect the weaknesses and vulnerable parts that
may accelerate the technology improvements and faster error
elimination.

