
nemus

SMART CONTRACT AUDIT

February 18th, 2022 / v.	2.0

nemus Smart Contact Audit

1info@blaze.tech

Table of

 Contents
Audit rating 2

Technical summary 3

The graph of vulnerabilities distribution 4

Severity Definition 5

Auditing strategy and Techniques applied \ Procedure 6

Executive summary 7

Complete Analysis 8

Code coverage and test results for all files 18

Disclaimer 23

Test coverage results 22

nemus Smart Contact Audit

2info@blaze.tech

Nemus contract’s
source code was
taken from the
repository provided
by the Nemus team.

SCORE 9.75/10

audit

 rating

The scope of the project is Nemus set of contracts:

AbstractMintVoucherFactory1/

NeaMintTicketFactory2/

Initial comit:

791840944dffc0346b840941a1d5e6de4a0b66f2

Last audited commit:

18dc0e24c2737dc1cdb626754f2e7c83dedb40a3

Repository:

https://github.com/Nemus-Team/nemus-contracts

https://github.com/Nemus-Team/nemus-contracts

nemus Smart Contact Audit

3info@blaze.tech

Technical

 summary

Testable code

In this report, we consider the security of the contracts for Nemus
protocol. Our task is to find and describe security issues in the
smart contracts of the platform. This report presents the findings of
the security audit of Nemus smart contracts conducted between
January 20th, 2022 - February 08th, 2022. 
Audit update was performed on February 18, 2022

The testable code is 99.46%, which is
above the industry standard of 95%.

The scope of the audit includes the unit test coverage, that bases
on the smart contracts code, documentation and requirements
presented by the Nemus team. Coverage is calculated based on
the set of Truffle framework tests and scripts from additional
testing strategies. Though, in order to ensure a security of the
contract Blaize.Security team recommends the Nemus team put in
place a bug bounty program to encourage further and active
analysis of the smart contracts.

INDUSTRY STANDARD

your average

100%75%50%25%0%

nemus Smart Contact Audit

4info@blaze.tech

Critical

High

Medium

Low

Lowest

5

4

2

1

6

FOUND

5

4

2

0

3

FIXED/VERIFIED

The table below shows the number of found issues
and their severity. A total of 18 problems were
found. 14 issues were fixed or verified by the
Nemus team.

27.8%

22.2%

11%
6%

33%

The graph of
vulnerabilities
distribution:

critical

high

medium

low

LOWest

nemus Smart Contact Audit

5info@blaze.tech

Severity Definition

A system contains several issues ranked as very
serious and dangerous for users and the secure 
work of the system. Needs immediate 
improvements and further checking.

Critical

A system contains a couple of serious issues, which 
lead to unreliable work of the system and migh 
cause a huge information or financial leak. Needs
immediate improvements and further checking.

High

A system contains issues which may lead to
mediumfinancial loss or users’ private information
leak. Needs immediate improvements and further
checking.

Medium

A system contains several risks ranked as relatively 
small with the low impact on the users’ information 
and financial security. Needs improvements.

Low

A system does not contain any issue critical to the 
secure work of the system, yet is relevant for best

Lowest

nemus Smart Contact Audit

6info@blaze.tech

Auditing strategyand
Techniques applied \ Procedure

In our report we checked the contract with the following parameters:

Procedure

Whether the contract is secure;

Whether the contract corresponds to the documentation;

Whether the contract meets best practices in efficient use of gas,
code readability;

We have scanned this smart contract for commonly known and
more specific vulnerabilities:

Unsafe type inference;

Timestamp Dependence;

Reentrancy;

Implicit visibility level;

Gas Limit and Loops;

Transaction-Ordering
Dependence;

Unchecked external call -
Unchecked math;

DoS with Block Gas Limit;

DoS with (unexpected) Throw;

Byte array vulnerabilities;

Malicious libraries;

Style guide violation;

ERC20 API violation;

Uninitialized state/storage/ 
local variables;

Compile version not fixed.

Automated analysis:

Scanning contract by several public available automated analysis
tools such as Mythril, Solhint, Slither and Smartdec. Manual
verification of all the issues found with tools.

Manual audit:

Manual analysis of smart contracts for security vulnerabilities.
Checking smart contract logic and comparing it with the one
described in the documentation.

nemus Smart Contact Audit

7info@blaze.tech

Executive

 summary

The contract contained several critical issues which did not allow
correct NFT minting for the most of user’s scenarios. Also several
high risk issues from the standard auditors list were found -
reentrancy and problem with ETH handling in particular. Though,
the team has fixed all the issues.  

All other issues were connected to missed checks, which may block
the contract, and code quality. Nevertheless, all security risk issues
were fixed by the team.  

The overall code quality and readability are high enough.

Security

Gas usage and logic optimization

Code quality

Test coverage**

Total

9.2

9.8

10

10

9.75

RATING

** There was very few initial tests presented by Nemus team, the
whole unit tests system was written by Blaize.Security engineers.

nemus Smart Contact Audit

8info@blaze.tech

Complete Analysis

Contract compilation fails with error “CompileError: CompilerError:
Stack too deep when compiling inline assembly: Variable
headStart is 1 slot(s) too deep inside the stack”. This is caused due
to the amount of local variables in the function editMintTicket().

Contracts don’t compile.

Reduce the amount of variables by packing them into struct.

Recommendation:

critical Resolved

Function claimMultipleEarlyAccess(). Variable from mapping
‘earlyAccessMintedCounts’ is not updated which lets early
accessor to claim NFTs without limitations.

Early access claimed amount is not updated.

Update the variable.

Recommendation:

After discussion of possible fixes with the Nemus team in spite of
recommended fix, also added value from mapping
earlyAccessMintedCounts (Line 279) to ‘userMintedAmount’ only
once before the loop.

Post-audit.

critical Resolved

NeaMintTicketFactory.sol

nemus Smart Contact Audit

9info@blaze.tech

function claimMultiple(), claimMultipleEarlyAccess(). It is possible to
pass an index of a ticket multiple times in an array, and thus
perform purchasing in one ticket several times during one
transaction. This way buyer is able to get around the validation in
function isValidClaim() (lines 300, 302, 303) and function
sValidEarlyAccessClaim() (line 321) and mint more NFTs than
mintTickets[mtIndexes].maxSupply,

mintTickets[mtIndexes].maxPerWallet or
mintTickets[mtIndexes].maxMintPerTxn restrict to.

For example a ticket with index 1 has only one nft left. User passes
index 1 multiple times and this way he can get around a validation,
since total supply doesn't change after each validation. After
validation mintBatch will mint nft from index 1 several times,
exceeding the limitation.

Buyer of NFTs is able to buy more tokens than limited

Either verify that the user can’t pass the same index multiple times
or change storage(mint NFTs, add claimedNFTs to user) after each
validation, thus providing updated storage before the next
validation.

Recommendation:

After the discussion with the Nemus team, it was discovered, that It
was still possible to avoid validations (for max supply and max per
tx), since NFTs are minted after the validations and max per tx is
validating separately for each passed index. Another set of checks
was added to the contract to avoid this issue.

Post-audit.

critical Resolved

nemus Smart Contact Audit

10info@blaze.tech

function claimMultiple(), claimMultipleEarlyAccess(). It’s verified that
the user has sent enough ETH for NFTs from each ticket separately
and this way one is able to pay not for all tokens he is buying.

Example: there are two tickets where each NFT costs one ETH per
token. User buys one nft from each ticket and sends 1 ether.
isValidClaim() and isValidEarlyAccessClaim() check that there is
enough ETH sent for each ticket separately in line 300 and 319.
Buyer was supposed to have sent 2 ETH, but instead he sent 1 and
the validation still won’t revert the transaction, letting the user pay
less than he had to.

Buyer of NFTs is able to pay not for all tokens

Calculate total cost for purchasing all the NFTs and check that

Buyer has sent enough ETH.

Recommendation:

critical Resolved

Line 262, function claimMultipleEarlyAccess(). The amount of early
access minted NFTs for user is calculated in variable
‘userMintedAmount’, however the variable is not verified like on line
237 in function claimEarlyAccess().

The amount of NFTs bought is not verified.

Validate that minted amount doesn’t exceed limitation.

Recommendation:

critical Resolved

nemus Smart Contact Audit

11info@blaze.tech

All the updates to the storages should be performed before
external calls(Returning of exceeded Ether).

In case, sender of transaction is using re-entrancy, he would be
able to avoid validations on max supply of NFT or

maximum amount, an early accessor can claim.

Possible re-entrancy attack.

Either use a Non-reentrant modifier from OpenZeppelin library on
the following function: claim(), claimMultiple(), claimEarlyAccess(),
claimMultipleEarlyAccess(), or consider making the following
changes to these functions:

claim(). Actions on lines 200-203 should be before returning Ether.

claimMultiple(). Actions on line 234 should be before returning Ether.

claimEarlyAccess(). Actions on lines 252-254, 257, 260 should be
before returning Ether.

claimMultipleEarlyAccess(). Actions on lines 293, 296 should be
before returning Ether.

Recommendation:

high Resolved

withdrawFunds() utilizes sned() method for transfering Ether to the
treasury and Gnosis Safe wallet addresses. Since send() utilizes
2300 gas for a call and does not forward gas further - it will fail on
the Eth sending to the multisig wallet.

Deprecated send() call for Gnosis Safe wallet.

Eliminate send() usage and use call() for both cases within
withdrawFunds()

Recommendation:

high Resolved

nemus Smart Contact Audit

12info@blaze.tech

isValidEarlyAccessClaim() validates that early access is in progress
by calling the function isEarlyAccessOpen(). This function only
validates that early access has started but it doesn’t check if it has
ended and early access tokens can be minted even after public
sale.

Early access NFTs can be minted even after public sale.

Check the window for early access sale.

Recommendation:

high Resolved

function claimMultiple(). Exceeded ETH should be sent back to the
message caller like in function claim().

Send exceeded ETH.

Transfer exceeded ETH to the message caller.

Recommendation:

high Resolved

Function editMintTicket(). It is possible to pass non-existent
‘_mtIndex’ (greater than mtCounter.current()) and write data to
non-existent tickets, thus corrupting the storage.

Validate that the provided index exists.

Verify that the provided index exists.

Recommendation:

medium Resolved

nemus Smart Contact Audit

13info@blaze.tech

Functions addMintTicket() and editMintTicket(). Variables
‘_earlyAccessOpens’ and ‘_publicSaleOpens’ should be validated
to be greater than block.timestamp to verify that sale periods are
happening at the actual time period.

Validate timestamp dependent variables.

Verify that ‘_earlyAccessOpens’ and ‘_publicSaleOpens’ are greater
than block.timestamp.

Recommendation:

medium Resolved

Lines 184, 229. Sending an exceeded value each time can cause
unnecessary gas spending(for example if the exceeded value is too
low and transferring it back will cost more gas than the actual or
exceeded amount).

Sending ‘dust’ values back to the message caller consumes more
gas than will actually be sent.

Do not send funds if transfer takes more gas than will actually be
sent.

Recommendation:

low Unresolved

nemus Smart Contact Audit

14info@blaze.tech

Starting from Solidity version 0.8 usage of SafeMath library is
unnecessary since Solidity has built-in checks for over/underflow.
SafeMath only increases gas spending during function calls.

Unnecessary usage of SafeMath library.

Replace all SafeMath functions with arithmetic operators.

Recommendation:

lowest Resolved

Line 96-97, 111. 144. Constructor parameters ‘_treasuryAddress’ and
‘_nemusAddress’ should be validated not to be zero address.

Parameter ‘_redeemableContract’ in functions addMintTicket() and
editMintTicket() should be validated as well.

Validate function parameters.

Add ‘requires’ to validate that address parameters are not zero
addresses.

Recommendation:

lowest Resolved

nemus Smart Contact Audit

15info@blaze.tech

Line 180, 209. Using ‘require’ is unnecessary and only increases gas
spendings since function isValidClaim() doesn’t return false. It either
reverts or returns true.

Unnecessary usage of ‘require’

Remove ‘require’ and just call the function isValidClaim() instead.

Recommendation:

lowest Unresolved

Lines 185-186, 230-231, 382-383, 385-386.. ETH should be sent with
Address.sendValue. This function performs all the necessary
security checks.

Use the Address library.

Use the Address library instead.

Recommendation:

Usage of ‘call’ already can cause reentrancy, however all the
changes of storage variables in the code happens after the call.
The team can also consider using a Non-reentrant library to
increase protection of the code.

Example of Address library usage:
Address.sendValue(_msgSender(), excessPayment)

Post-audit.

lowest Unresolved

nemus Smart Contact Audit

16info@blaze.tech

Line 324. This ‘require’ will never revert since in case index doesn’t
exist, it will revert on line 321.

Lines 228, 286. These ‘requires’ will never revert, because of
subtractions on lines 224, 282 which will revert sooner, than ‘requires

‘Require’ statement will never revert

Remove unnecessary ‘require’

Recommendation:

lowest Unresolved

Currently, in order to change one parameter, the admin has to call
the function editMintTicket() which changes all the parameters of
sale.

Add more setters.

Add more setters.

Recommendation:

lowest Resolved

Nemus Smart Contact Audit

17info@blaze.tech

Re-entrancy

Arithmetic Over/Under Flows

Access Management Hierarchy

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Delegatecall Unexpected Ether

Hidden Malicious Code

Default Public Visibility

External Contract Referencing

Entropy Illusion (Lack of Randomness)

Unchecked CALL Return Values

Short Address/ Parameter Attack

Race Conditions / Front Running

Signatures Replay

Tx.Origin Authentication

Pool Asset Security (backdoors in the
underlying ERC-20)

General Denial Of Service (DOS)

Floating Points and Precision

Uninitialized Storage Pointers

NeaMintTicketFactory.solAbstractMintVoucherFactory.sol

18info@blaze.tech

Code coverage and test
results for all files

Contract: NeaMintTicketFactory

Should not let claim during early acces if zero
provided (435ms)
Should not let not ealy accesser claim during early
access (485ms)
Shoult not let claim early access tokens if
early access period finished (439ms)
Should not let claim during early access if not
enough Ether sent (498ms)
Should not let claim during early access if
amount exceeds max supply (983ms)
Should not let claim if amount exceeds max
amount per early accesser (530ms)
Should claim early access tokens (1144ms)
Should return exceed Ether during early access
claim (820ms)

Should not let claim if paused (737ms)
Should not let claim if index doesn't exist (405ms)
Should not let claim if sale is paused (1459ms)
Should not let claim if sale is not live (410ms)
Should not let claim if not enough Ether sent
(785ms)
Should not let claim more than allowed for one
wallet (2160ms)
Should not let claim more than allowed for
one tx (505ms)
Should not claim more than max supply (2998ms)
Should claim (1420ms)

nemus Smart Contact Audit

nemus Smart Contact Audit

19info@blaze.tech

Should return exceeded Ether during claim (570ms)
Should revert if sale is paused (854ms)

Should claim multiple early access (3695ms)
Should not let claim multiple more, than
allowed for early claim (1459ms)
Should not let early claim multiple if paused
(877ms)
Should not let early claim multiple if one or
more claim is invalid (1247ms)
Should not let early claim multiple if not
enough Ether sent (695ms)
Should return exceeded Ether during early claim
(1110ms)
Should not let pass repeatable indexes (723ms)

Should claim multiple (2933ms)
Should not let claim multiple when paused
(1016ms)
Should not let claim if one or more claims are
invalid (1364ms)
Should not let claim if not enough Ether sent
(976ms)
Should return exceeded Ether (1277ms)
Should not let put repeatable indexes in array
(736ms)

Should turn sale off and on (1142ms)
Should add and remove from early access list
(1036ms)
Should return ticket size id (137ms)
Should mint (641ms)
Should mint batch (1676ms)
Should withdraw funds (1068ms)

nemus Smart Contact Audit

20info@blaze.tech

Should not change percentages if their
summation is greater than 100 (338ms)
Should change percentages (1564ms)
Should return uri (738ms)
Should let admin unpause (3795ms)
Should return name and symbol (298ms)
Should set new URI (1540ms)
Should set new owner (2925ms)
Should return support interface id (149ms)

Should revert if early sale open is after
public sale open (949ms)
Should revert if public sale open is after public
sale close (1904ms)
Cannot set open or close sale to zero
(1075ms)
Cannot set open sale below current timestamp
(599ms)
Cannot set redeemable contract to zero address
(1003ms)
Should not edit params to non-existant
ticket (624ms)
Should set early access start to existing ticket
(1396ms)
Should set public access start to existing ticket
(1771ms)
Should set public sale end to existing ticket
(1218ms)
Should set new token price to existing ticket
(993ms)
Should set new total supply to existing ticket
(1328ms)
Should set new max mint per tx to existing ticket
(1262ms)
Should set new max mint per wallet (1143ms)

nemus Smart Contact Audit

21info@blaze.tech

Should set new size id to existing ticket (1028ms)
Should set new metadata id to existing ticket
(995ms)
Should set new redeemable contract to
existing ticket (1624ms)

Should burn from redeem (1355ms)
Only redeemable contract can burn (1243ms)

Should burn from redeem (1355ms)
Only redeemable contract can burn (1243ms)

nemus Smart Contact Audit

22info@blaze.tech

FILE

AbstractMintVoucherFactory

NeaMintTicketFactory

All files

91.67

100

% STMTS

99.46

100

91.91

% BRANCH

91.91

91.67

100

% FUNCS

97.92

Test

coverage

results

nemus Smart Contact Audit

23info@blaze.tech

Disclaimer
The information presented in this report is an intellectual property
of the customer including all presented documentation, code
databases, labels, titles, ways of usage as well as the information
about potential vulnerabilities and methods of their exploitation.
This audit report does not give any warranties on the absolute
security of the code. Blaize.Security is not responsible for how you
use this product and does not constitute any investment advice.

Blaize.Security does not provide any warranty that the working
product will be compatible with any software, system, protocol or
service and operate without interruption. We do not claim the
investigated product is able to meet your or anyone else
requirements and be fully secure, complete, accurate and free of
any errors and code inconsistency.

We are not responsible for all subsequent changes, deletions and
relocations of the code within the contracts that are the subjects
of this report.

You should perceive Blaize.Security as a tool which helps to
investigate and detect the weaknesses and vulnerable parts that
may accelerate the technology improvements and faster error
elimination.

