
nemus NFT

SMART CONTRACT AUDIT

March 14th, 2022 / v.	2.0

nemus Smart Contact Audit

1info@blaze.tech

Table of

 Contents
Audit rating 2

Technical summary 3

The graph of vulnerabilities distribution 4

Severity Definition 5

Auditing strategy and Techniques applied \ Procedure 6

Executive summary 7

Complete​ Analysis 8

Code coverage and test results for all files 16

Disclaimer 20

Test coverage results 19

nemus Smart Contact Audit

2info@blaze.tech

Nemus contract’s
source code was
taken from the
repository provided
by the Nemus team.

SCORE 9.8/10

audit

 rating

The scope of the project is Nemus set of contracts:

Contracts repository:

https://github.com/Nemus-Team/nemus-contracts

contracts/nft/NeaNFT.sol1/

contracts/nft/ERC721A.sol2/

Initial commit:

0a160065f10347e3f263c901fe49bcfbf1f89daa

Final commit:

9b8a4c325a86c696f0498e07db12c1e2ae55e29c

https://github.com/Nemus-Team/nemus-contracts

nemus Smart Contact Audit

3info@blaze.tech

Technical

 summary

Testable code

In this report, we consider the security of the contracts for Nemus
protocol. Our task is to find and describe security issues in the
smart contracts of the platform. This report presents the findings of
the security audit of Nemus smart contracts conducted between
February 7th, 2022 - March 14th, 2022.

The testable code is 95.2%, which is
above the industry standard of 95%.

The scope of the audit includes the unit test coverage, that bases
on the smart contracts code, documentation and requirements
presented by the Nemus team. Coverage is calculated based on
the set of Truffle framework tests and scripts from additional
testing strategies. Though, in order to ensure a security of the
contract Blaize.Security team recommends the Nemus team put in
place a bug bounty program to encourage further and active
analysis of the smart contracts.

INDUSTRY STANDARD

your average

100%75%50%25%0%

nemus Smart Contact Audit

4info@blaze.tech

Critical

High

Medium

Low

Lowest

3

1

0

5

2

FOUND

3

1

0

4

2

FIXED/VERIFIED

The table below shows the number of found issues
and their severity. A total of 10 problems were
found. 10 issues were fixed or verified by the
Nemus team.

30%

10%

40%

20%

The graph of
vulnerabilities
distribution:

critical

high

low

LOWest

nemus Smart Contact Audit

5info@blaze.tech

Severity Definition

A system contains several issues ranked as very
serious
 and dangerous for users and the secure 
work of the
 system. Needs immediate 
improvements and further
 checking.

Critical

A system contains a couple of serious issues, which 
lead to unreliable work of the system and migh 
cause
 a huge information or financial leak. Needs
immediate improvements and further checking.

High

A system contains issues which may lead to
mediumfinancial loss or users’ private information
leak. Needs
 immediate improvements and further
checking.

Medium

A system contains several risks ranked as relatively 
small with the low impact on the users’ information 
and financial security. Needs improvements.

Low

A system does not contain any issue critical to the 
secure work of the system, yet is relevant for best

Lowest

nemus Smart Contact Audit

6info@blaze.tech

Auditing strategyand
Techniques applied \ Procedure

In our report we checked the contract with the following parameters:

Procedure

Whether the contract is secure;

Whether the contract corresponds to the documentation;

Whether the contract meets best practices in efficient use of gas,
code readability;

We have scanned this smart contract for commonly known and
more specific vulnerabilities:

Unsafe type inference;

Timestamp Dependence;

Reentrancy;

Implicit visibility level;

Gas Limit and Loops;

Transaction-Ordering
Dependence;

Unchecked external call -
Unchecked math;

DoS with Block Gas Limit;

DoS with (unexpected) Throw;

Byte array vulnerabilities;

Malicious libraries;

Style guide violation;

ERC20 API violation;

Uninitialized state/storage/ 
local variables;

Compile version not fixed.

Automated analysis:

Scanning contract by several public available automated analysis
tools such as Mythril, Solhint, Slither and Smartdec. Manual
verification of all the issues found with tools.

Manual audit:

Manual analysis of smart contracts for security vulnerabilities.
Checking smart contract logic and comparing it with the one
described in the documentation.

nemus Smart Contact Audit

7info@blaze.tech

Executive

 summary

The contract contained critical issue from the standard auditors
checklist together with several issues with NFT minting. Though, the
team has fixed the issue.  

All other issues were connected to the code quality and gas
optimizations. The contract was represented as the custom
implementation of the ERC721 contract with unoptimal code with
quite low code quality. Nevetheless, during the audit, Nemus team
significantly increased the quality of the codebase, restored the
contract functionality and provided appropriate comments to the
functionality.

** Contracts have good native coverage which was checked within
the scope of the audit. Nevertheless - security team has prepared
own set of tests.

Security

Gas usage and logic optimization

Code quality

Test coverage**

Total

9.8

9.6

10

10

9.8

RATING

nemus Smart Contact Audit

8info@blaze.tech

Complete​ Analysis

NeaNFT.sol, redeem()

The function utilizes the comparison against tx.origin, which is first
of all forbidden within the standard auditors list, and actually does
not give the protection against call from the contract. So it is
recommended to use the isContract() check from the standard
Address.sol contract in order to prevent call from the contract.

tx.origin usage.

Remove tx.origin usage.

Recommendation:

Usage of tx.origin was removed from the contract.

Post-audit.

critical Resolved

NeaNFT.sol, _mint()

The function overrides standard mint functionality from ERC721 and
omits all security checks with no reason.

Unverified override.

Remove unnecessary override.

Recommendation:

Function was replaced with ERC721A._safeMint()

Post-audit.

critical Resolved

nemus Smart Contact Audit

9info@blaze.tech

NeaNFT.sol, _mint()

ERC721.sol, _mint()

Functionality is aimed to mint a certain NFT id to the user, though
the ID actually minted will not be the same as added for the user.
The array of owners of ids is not synchronized with the actually
minted ids.

Incorrect minting by ID.

Restore standard ERC721 contract, or synchronize minting with the
owners array, where ids are stored. For now neither generated
event, no checks against the ids to be inline, nor minting of the next
if are not synchronized with what the user will receive. In general,
minting functionality should be re-verified.

Recommendation:

Function was replaced with ERC721A._safeMint().

Post-audit.

critical Resolved

nemus Smart Contact Audit

10info@blaze.tech

ERC721.sol: _burn()

Burn function works incorrectly, because of several reasons:

it actually does not change the supply of the tokens, and this pitfall
is achieved in NeaNFT.sol redeem() function, where token supply is
checked;

In combination with _mint() function it allows to mint token with
place on the wrong id in case of burnt token re-mint;

There is no any check against burnt token in the contracts set;

And actually burn functionality is not used throughout the
contracts set.

So, since this functionality is not needed it is recommended to
remove it, as it may influence further development, or to use the
standard implementation of ERC721, since the problem is in the
changed storage access.

Incorrect burn functionality.

Remove burn functionality or restore the standard contract for
ERC721.

Recommendation:

Function was removed.

Post-audit.

high Resolved

nemus Smart Contact Audit

11info@blaze.tech

ERC721.sol: Function balanceOf() has unlimited cycles - since there
are no restrictions on the amount of tokens minted, view calls to
this function may fail.

Unlimited cycle.

Add another view function to check the balance of the owner
within the range of ids.

Recommendation:

Function was replaced with ERC721A.balanceOf() which has no
unlimited cycle.

Post-audit.

low Resolved

ERC721A.sol: function ownershipOf().

The purpose of the function is to return the TokenOwnership struct
of ‘tokenId”.

It is enough to return _ownerships[tokenId] instead of iterating
through mapping.

Unnecessary loop for searching owner address.

Remove loop and return _ownerships[tokenId].

Recommendation:

low Resolved

nemus Smart Contact Audit

12info@blaze.tech

NeaNFT.sol: function setSaleData().

Parameters should be validated not to be zero, ‘_presaleStart’
should be greater than block.timestamp and ‘_publicStart’ should
be greater than ‘_presaleStart’.

Validate function parameters.

Validate parameters.

Recommendation:

low Resolved

NeaNFT.sol: explorationAddress and conservationAddress have
visibility defined.

Missing default visibility.

Add public/private qualificator for the variables .

Recommendation:

low Resolved

There is the _numberMinted() function (line 148) that is used
nowhere in ERC721A.sol.

Unused internal function.

Remove the unused function.

Recommendation:

low Unresolved

nemus Smart Contact Audit

13info@blaze.tech

ERC721.sol

This contract is the modified OpenZeppelin version, with deleted
storage for balances. Actually this modification has no pros
against the standard implementation, because it does not simplify
or optimize the solution. In general it is recommended to use the
OpenZeppelin version of the functionality unless there are breaking
changes to the core of the NFT contract.

Modified ERC721.

Use the standard version of the contract.

Recommendation:

Contract was replaced with ERC721A.sol which has significant
changes compared to OpenZeppelin version.

Post-audit.

lowest Resolved

NeaMint.sol, redeem(). The function calls directly to the storage,
though the totalSupply() method from ERC721ENumerable can be
used for the encapsulation.

Call to totalSupply.

Use existing function.

Recommendation:

lowest Resolved

Nemus Smart Contact Audit

14info@blaze.tech

Re-entrancy

Arithmetic Over/Under Flows

Access Management Hierarchy

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Delegatecall Unexpected Ether

Hidden Malicious Code

Default Public Visibility

External Contract Referencing

Entropy Illusion (Lack of Randomness)

Unchecked CALL Return Values

Short Address/ Parameter Attack

Race Conditions / Front Running

Signatures Replay

Tx.Origin Authentication

Pool Asset Security (backdoors in the
underlying ERC-20)

General Denial Of Service (DOS)

Floating Points and Precision

Uninitialized Storage Pointers

NeaNFT.solERC721A.sol

15info@blaze.tech

Code coverage and test
results for all files

Contract: NeaNFT

Token owner should not transfer a token if a set
token mode (789ms)
Owner should add addresses to the allow list
(130ms)

User should redeem (301ms)
User should not redeem during early access if he
is not on the allowed list (79ms)
User should redeem during early access if
he is on the allowed list (335ms)
User should not redeem if zero amount
(45ms)
User should not redeem if not enough amount

Owner should set a base URI
Owner should set an exploration contract address
Owner should not set an exploration contract
address if zero address
Owner should set an conservation contract
address
Owner should not set an conservation contract
address if zero address
Owner should set an allowance of token
mode setting (41ms)
Owner should set an address of a Nea mint ticket
factory (100ms)
Owner should not set an address of a Nea
mint ticket factory if zero address

nemus Smart Contact Audit

16info@blaze.tech

Owner should set an early access end time
Owner should not set an early access end time if
past time
Owner should batch set tiers of tokens
Owner should not batch set tiers of tokens if array
length mismatch

Owner should set the token exploration
mode (38ms)
Token owner should set the exploration
mode for his token (138ms)
Owner should set the token conservation mode
Owner should set the token combo mode (45ms)
Owner should return to the mode-free state of a
token (59ms)
Contract, token non-owner can not set a token
mode (123ms)
Owner should not set if the same token mode
Owner should not set if no allowance of token
mode setting

Should get token's owner data
Should get token's ticket size ID
Should get token's mode
Should get token's tier
Should get owner's token IDs
Should get an empty array if empty wallet

add addresses to the allow list
set a base URI
set an address of a Nea mint ticket factory
set an exploration contract address
set an conservation contract address
set an early access end time
set an allowance of token mode setting
batch set tiers of tokens

nemus Smart Contact Audit

17info@blaze.tech

Should get a balance of an owner (353ms)
Should not get a balance if zero address
Should get an owner of a token (296ms)
Should not get an owner of a nonexistent token

Should get the total supply (56ms)
Should get a token index (42ms)
Should not get a token index if global index out of
bounds
Should get a token ID of an owner at a given index
(41ms)
Should get a token ID of an owner at a given index
when some tokens (52ms)
Should get a token ID of an owner at a given index
when there are some NFT owners (79ms)
Should not get a token ID of an owner by an index
if owner's balance is more than the index

Token owner should transfer a token (63ms)
Token owner should transfer a token when
some tokens (61ms)
Token owner should transfer a token when some
tokens with different owners (94ms)
User should not transfer if he does not own
the token and does not have approval
(43ms)
Token owner should not transfer if incorrect
owner (51ms)
Token owner should not transfer if transfer to
zero address (45ms)
Should get a token URI (351ms)

nemus Smart Contact Audit

nemus Smart Contact Audit

18info@blaze.tech

FILE

ERC721A.sol 90.35

% STMTS

76

% BRANCH

78.57

% FUNCS

NeaNFT.sol 100 100 100

All files 95.2 80.23 86.96

Test

coverage

results

Also it needs to be mentioned, that Nemus has own set of unit tests with quite good
quality.

Also, ERC721A contract mostly contains standard ERC721 functionality which was
carefully checked against the standard OpeZeppelin implementation.

nemus Smart Contact Audit

19info@blaze.tech

Disclaimer
The information presented in this report is an intellectual property
of the customer including all presented documentation, code
databases, labels, titles, ways of usage as well as the information
about potential vulnerabilities and methods of their exploitation.
This audit report does not give any warranties on the absolute
security of the code. Blaize.Security is not responsible for how you
use this product and does not constitute any investment advice.

Blaize.Security does not provide any warranty that the working
product will be compatible with any software, system, protocol or
service and operate without interruption. We do not claim the
investigated product is able to meet your or anyone else
requirements and be fully secure, complete, accurate and free of
any errors and code inconsistency.

We are not responsible for all subsequent changes, deletions and
relocations of the code within the contracts that are the subjects
of this report.

You should perceive Blaize.Security as a tool which helps to
investigate and detect the weaknesses and vulnerable parts that
may accelerate the technology improvements and faster error
elimination.

