
peakdefi Launchpad

SMART CONTRACT AUDIT

February 2d, 2022 / v.	1.0

PeakDeFi Smart Contact Audit

1info@blaze.tech

Table of

 Contents
Audit rating 2

Technical summary 3

The graph of vulnerabilities distribution 4

Severity Definition 5

Auditing strategy and Techniques applied \ Procedure 6

Executive summary 7

Complete​ Analysis 8

Code coverage and test results for all files 23

Disclaimer 27

Test coverage results 26

PeakDeFi Smart Contact Audit

2info@blaze.tech

The PeakDeFi
Launchpad contract’s
source code was
taken from the
repository provided
by the PeakDeFi team.

SCORE 9.7 /10

audit

 rating

The scope of the project is PeakDeFi set of contracts:

SaleFactory
1/

Staking2/

PeakDefiSale
3/

The scope of the audit is the code at the main branch with commit:

678fbc8e0785d567c2248027dc3be93d76f87b8e 

Post-audit scope for validation includes the code at the main
branch with commit:

e94cb77a3db211cec5c772c31c216d879ef4ff4a

Repository:

https://github.com/PeakDeFi/peakdefi-launchpad

https://github.com/PeakDeFi/peakdefi-launchpad

PeakDeFi Smart Contact Audit

3info@blaze.tech

Technical

 summary

Testable code

In this report, we consider the security of the contracts for
PeakDeFi protocol. Our task is to find and describe security issues
in the smart contracts of the platform. This report presents the
findings of the security audit of PeakDeFi smart contracts
conducted between January 17th, 2022 - February 2d, 2022.

The testable code is 100%, which is above
the industry standard of 95%.

The scope of the audit includes the unit test coverage, that bases
on the smart contracts code, documentation and requirements
presented by the PeakDeFi team. Coverage is calculated based on
the set of Truffle framework tests and scripts from additional
testing strategies. Though, in order to ensure a security of the
contract Blaize.Security team recommends the PeakDeFi team put
in place a bug bounty program to encourage further and active
analysis of the smart contracts.

INDUSTRY STANDARD

your average

100%75%50%25%0%

PeakDeFi Smart Contact Audit

4info@blaze.tech

Critical

High

Medium

Low

Lowest

11

2

3

2

8

FOUND

11

2

3

2

5

FIXED/VERIFIED

The table below shows the number of found issues
and their severity. A total of 26 problems were
found. 23 issues were fixed or verified by the
PeakDeFi team.

42%

31%8%

8%

11.5%

The graph of
vulnerabilities
distribution:

critical

high

medium

LOW

lowest

PeakDeFi Smart Contact Audit

5info@blaze.tech

Severity Definition

A system contains several issues ranked as very
serious
 and dangerous for users and the secure 
work of the
 system. Needs immediate 
improvements and further
 checking.

Critical

A system contains a couple of serious issues, which 
lead to unreliable work of the system and migh 
cause
 a huge information or financial leak. Needs
immediate improvements and further checking.

High

A system contains issues which may lead to
mediumfinancial loss or users’ private information
leak. Needs
 immediate improvements and further
checking.

Medium

A system contains several risks ranked as relatively 
small with the low impact on the users’ information 
and financial security. Needs improvements.

Low

A system does not contain any issue critical to the 
secure work of the system, yet is relevant for best

Lowest

PeakDeFi Smart Contact Audit

6info@blaze.tech

Auditing strategyand
Techniques applied \ Procedure

In our report we checked the contract with the following parameters:

Procedure

Whether the contract is secure;

Whether the contract corresponds to the documentation;

Whether the contract meets best practices in efficient use of gas,
code readability;

We have scanned this smart contract for commonly known and
more specific vulnerabilities:

Unsafe type inference;

Timestamp Dependence;

Reentrancy;

Implicit visibility level;

Gas Limit and Loops;

Transaction-Ordering
Dependence;

Unchecked external call -
Unchecked math;

DoS with Block Gas Limit;

DoS with (unexpected) Throw;

Byte array vulnerabilities;

Malicious libraries;

Style guide violation;

ERC20 API violation;

Uninitialized state/storage/ 
local variables;

Compile version not fixed.

Automated analysis:

Scanning contract by several public available automated analysis
tools such as Mythril, Solhint, Slither and Smartdec. Manual
verification of all the issues found with tools.

Manual audit:

Manual analysis of smart contracts for security vulnerabilities.
Checking smart contract logic and comparing it with the one
described in the documentation.

PeakDeFi Smart Contact Audit

7info@blaze.tech

Executive

 summary

The contract contained several critical issue connected to the
incorrect funds flow and incorrect storage usage. There were no
restrictions for admin functions and there were several scenarios
which could cause lock of the funds on the contract. Though, the
team has fixed pointed issues and they are also covered with
appropriate cases..  

All other issues were connected to missed checks, which could
cause particular disfunction of the contract, and code quality.
Nevertheless, all security risk issues were fixed by the team.  

The overall security is high enough though the code lacks of
documentation and the overal quality may be increased.
Nevertheless, it performs all desired actions and has solid
functionality.

* There was no initial test coverage presented by PeakDeFi team,
the whole unit tests system was written by Blaize.Security
engineers.

Security

Gas usage and logic optimization

Code quality

Test coverage*

Total

9.8

9.8

9.2

10

9.7

RATING

PeakDeFi Smart Contact Audit

8info@blaze.tech

Complete​ Analysis

Starting from Solidity version 0.8 usage of SafeMath library is
unnecessary since Solidity has built-in checks for over/underflow.
SafeMath only increases gas spending during function calls.

Unnecessary usage of SafeMath library.

Replace all SafeMath functions with arithmetic operators.

Recommendation:

lowest Resolved

Common

SaleFactory.sol

Contract exceeds 24576 bytes thus, it might be non-deployable to
mainnet.

Contract code size exceeds 24576 bytes.

Reduce code size.

Recommendation:

Compiling in Remix with optimization runs 200 created a bytecode
which didn’t exceed 24576 bytes.

Post-audit.

For compiling we use remix and code optimization. Cant̀ make it
smaller than now.

Answer from client.

critical Resolved

PeakDeFi Smart Contact Audit

9info@blaze.tech

Line 27 in constructor. Passed variables ‘_adminAddress’ and
‘_allocationStaking’

Should be validated not to be zero address. This is especially
crucial for variable ‘_adminAddress’ since the storage variable
‘admin’ has no additional setters.

Variables lack validation for zero address.

Validate that passed address variables are not zero addresses.

Recommendation:

low Resolved

Function doesn't work under any conditions.

Function getAllSales() doesn’t return all sales

// require(endIndex > startIndex, "Bad input"); change to

require(endIndex >= startIndex, "Bad input")

 // address[] memory sales = new address[](endIndex - startIndex);
change to

 address[] memory sales = new address[](endIndex - startIndex + 1);

 // for(uint i = startIndex; i < endIndex; i++) change to

 for(uint i = startIndex; i <= endIndex; i++)

Recommendation:

medium Resolved

PeakDeFi Smart Contact Audit

10info@blaze.tech

PeakDeFiSale.sol

Line 34. ‘Require’ statements should provide error strings for better
error clarification.

Missing revert string in ‘require’.

Add revert strings to ‘require’ statements.

Recommendation:

lowest Resolved

Condition if(tokensPerTier * sale.tokenPriceInBUST /
10**sale.token.decimals() < t.BUSTDeposited) cannot be satisfied
because if all tokens in tier are sold t.BUSTDeposited is equal to
tokensPerTier * sale.tokenPriceInBUST / 10**sale.token.decimals

In else block totalTokensSold has to be calculated as sum of all
tokens sold in each tier

calculateTotalTokensSold() doesn’t work properly. Funds can be
stuck.

Change the sign of comparison in the first condition to less or
equal.

Accumulate number of sold tokens from all tiers in case if not all
tokens were sold

Recommendation:

critical Resolved

PeakDeFi Smart Contact Audit

11info@blaze.tech

Function fails to pass requirement sale.saleStart > block.timestamp

Variable sale.saleStart is never assigned.

Admin function updateTokenPriceInBUSD() doesn’t work

Assign value to variable

Recommendation:

critical Resolved

Logic error in Line 110

Vesting parameters cannot be set after sale is created

Remove “!” sign form require statement.

Recommendation:

critical Resolved

PeakDeFi Smart Contact Audit

12info@blaze.tech

Lines 512, 528, 536. It is said that the Maintoken, in which the funds
are collected is ERC20(BUSD, based on naming of variables
'sale.totalBUSDRaised'). The funds are collected like ERC20 token
(line 402). However in the functions withdrawEarningsInternal(),
withdrawLeftoverInternal(), withdrawRegistrationFees() funds are
transferred as ETH(or any native coin of blockchain) with function
safeTransferPEAK().

Funds might not be withdrawn correctly.

Verify that funds withdrawal and collection is performed correctly.

Recommendation:

Functions withdrawLeftoverInternal() and
withdrawRegistrationFees() were removed. Function
withdrawEarningsInternal() was fixed.

Post-audit.

critical Resolved

Lines 283, 296. Functions set essential for contract operation
information, however they are not restricted and anyone can call
them.

Anyone can call functions.

Restrict functions from being called by anyone.

Recommendation:

critical Resolved

PeakDeFi Smart Contact Audit

13info@blaze.tech

Line 370. Tiers start with 0index, thus user is able to register in tier 0.
However, the ‘require’ statement will revert if the user's tier is equal
0, though it might be a valid tier for the user.

Function call will revert if the user registered for tier 0.

Choose another way to validate the user is in the whitelist, or start
tiers with index 1.

Recommendation:

critical Resolved

During any first claim with function withdrawTokens() use also
claims any leftovers if there are some and this is the only chance to
claim leftovers.

However this is possible for the user to claim all his portions by
calling function withdrawMultiplePortions() and not claim leftovers.
After claiming all portions, it is impossible to call function
withdrawTokens() and claim leftovers, thus the user won’t be able
to claim his funds back.

User’s leftovers might get stuck.

Consider adding another external function for claiming leftovers.

Recommendation:

critical Resolved

PeakDeFi Smart Contact Audit

14info@blaze.tech

Lines 400, 603. In case sale.tokenPriceInBUST has 18 decimals(as the
BUSD token has), the contract might lose accuracy during
calculations.

For example, 2 BUSD tokens were deposited which 2 * 10^18 and the
price is set as 0.4 * 10^18. The result of division will be (2 * 10^18) / (0.4 *
10^18) = 5, where it should 5 * (10^sale.token.decimals()) counting that
different tokens might have different decimals.

This should also be taken into account in line 443.

Potential loss of accuracy

Consider decimals in the formulas.

For formulas in lines 400, 603 the calculation should look like:
amountOfTokensDeposited * (10**sale.token.decimals()) /
sale.tokenPriceInBUST

For formula in line 443 the calculation should look like:
tokensForUser * sale.tokenPriceInBUST / 10**sale.token.decimals().

Recommendation:

high Resolved

PeakDeFi Smart Contact Audit

15info@blaze.tech

Line 400. It is not verified that sale.totalTokensSold doesn’t exceed
sale.amountOfTokensToSell.

Also, In case during sale or vesting, the price of tokens decreases(

by setting a lower value in updateTokenPriceInBUSD()) users'
bought amount could exceed sale.amountOfTokensToSell.

For example, sale.amountOfTokensToSell is 100 and the price of
token is 1$. User1 provides 50 BUSD and buys 50 tokens as well as
user2 does.

When vesting starts, the admin sets the price of the token to be
0.5$. User1 claims his tokens with a value of 50$ and the amount of
tokens for user1 is now 50 / 0.5 = 100 tokens, which he claims. When
user2 decides to claim his tokens, there are already not enough
tokens on the contract's balance.

The Amount of tokens sold might exceed the amount of tokens to
sell.

Verify that sale.totalTokensSold cannot exceed
sale.amountOfTokensToSell in all cases.

Recommendation:

Client added a restriction in function updateTokenPriceInBUSD(),
validating that a price cannot be changed once the sale has
started.

However there is no validation in function participate() that
sale.totalTokensSold doesn’t exceed sale.amountOfTokensToSell.

Post-audit.

high Resolved

PeakDeFi Smart Contact Audit

16info@blaze.tech

Lines 338, 446, 522. ERC20 tokens should be transferred with
‘safeTransfer’ and ‘safeTransferFrom’. SafeERC20 performs all the
checks that tokens were transferred, including ono-standard
ERC20 implementation(like in USDT tokens).

Use SafeERC20 library.

Use ‘safeTransfer’ and ‘safeTransferFrom’ instead.

Recommendation:

medium Resolved

Line 601. Variable ‘portionVestingPrecision’ indicates the summation
of elements from array ‘vestingPrecentPerPortion’ and can be
greater than 100. Thus, this variable should be used to calculate an
accurate amount of tokens for portions.

Use ‘portionVestingPrecision’ instead of 100.

Use the variable ‘portionVestingPrecision’ in the formula.

Recommendation:

Variable ‘portionVestingPrecision’ was replaced by 100.

Post-audit.

medium Resolved

PeakDeFi Smart Contact Audit

17info@blaze.tech

Line 191. Passed variable ‘_mainToken’ is not validated not to be zero
address.

Variable lacks zero address check.

Variable ‘mainToken’ was replaced by variable ‘BUSDToken’ and
being initialized during contract deployment.

Post-audit.

Validate that variable is not zero address before assigning it to the
storage variable.

Recommendation:

low Resolved

Lines 112, 113, 125, 129, 241, 459, 504, 507, 517, 518. ‘Require’ statements
should provide error strings for better error clarification.

Missing revert string in ‘require’.

Add revert strings to ‘require’ statements.

Recommendation:

lowest Unresolved

Line 276. Pre-production code should not contain test code.

Remove the test function.

Make sure to remove all test code from contracts.

Recommendation:

lowest Resolved

PeakDeFi Smart Contact Audit

18info@blaze.tech

Line 480. ETHshould be sent with Address.sendValue. This function
performs all the necessary security checks.

Use the Address library.

Use the Address library instead.

Recommendation:

Transferring ETH was removed from contract.

Post-audit.

lowest Resolved

Function withdraw(). Line 59. Currently the user is able to pass a
greater value than he has staked and ‘require’ won’t revert, since it
is compared, that user.amount is less or equal than ‘_amount’. Also
it prevents the user from withdrawing less funds than he has
staked.

Wrong comparison sign.

Change a comparison sign from ‘<=’ to ‘>=’.

Recommendation:

critical Resolved

Stacking.sol

PeakDeFi Smart Contact Audit

19info@blaze.tech

Function withdraw(). In Function withdraw(), before withdrawing
funds, an internal function harvest() is called. This function changes
user.staking to current block.timestamp. After that a withdrawal fee
is calculated, based on the difference between user.staking and
block.timestamp. This difference will always be equal to 0 causing
the user to pay a maximum 30% of withdrawal fee, even though the
actual difference between deposit timestamp and withdrawal
timestamp could be much greater.

The Withdrawal fee will always be 30%.

Make sure that the difference between actual deposit timestamp
and withdrawal timestamp is calculated correctly and users don’t
lose their funds.

Recommendation:

critical Resolved

Line 44, function setStakingToken. Function sets essential
information in contract, however anyone can call it.

Anyone can call a function.

Restrict function from being called by anyone.

Recommendation:

critical Resolved

PeakDeFi Smart Contact Audit

20info@blaze.tech

Line 45. Parameter _erc20 should be checked not to be zero
address.

Variable lack check for zero address.

Add ‘require’ statement to validate that variable is not a zero
address.

Recommendation:

lowest Unresolved

Line 131. Use the storage variable ‘stakingPercent’ instead of value 7
(especially since ‘stakingPercent’ is not used anywhere in code.)
Value 31556926 should also be used as a storage constant for better
code understanding.

Values should be used as storage constants.

Move values to storage constants.

Recommendation:

lowest Resolved

Lines 138-144. Use Solidity time units(days, weeks, etc) instead of
calculating your own values. For better code understanding.

Use Solidity time units.

Use Solidity time units instead.

Recommendation:

lowest Unresolved

PeakDeFi Smart Contact Audit

21info@blaze.tech

Re-entrancy

Arithmetic Over/Under Flows

Access Management Hierarchy

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Delegatecall Unexpected Ether

Hidden Malicious Code

Default Public Visibility

External Contract Referencing

Entropy Illusion (Lack of Randomness)

Unchecked CALL Return Values

Short Address/ Parameter Attack

Race Conditions / Front Running

Signatures Replay

Tx.Origin Authentication

Pool Asset Security (backdoors in the
underlying ERC-20)

General Denial Of Service (DOS)

Floating Points and Precision

Uninitialized Storage Pointers

SaleFactory.solPeakDefiSale.sol

PeakDeFi Smart Contact Audit

22info@blaze.tech

Re-entrancy

Arithmetic Over/Under Flows

Access Management Hierarchy

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Delegatecall Unexpected Ether

Hidden Malicious Code

Default Public Visibility

External Contract Referencing

Entropy Illusion (Lack of Randomness)

Unchecked CALL Return Values

Short Address/ Parameter Attack

Race Conditions / Front Running

Signatures Replay

Tx.Origin Authentication

Pool Asset Security (backdoors in the
underlying ERC-20)

General Denial Of Service (DOS)

Floating Points and Precision

Uninitialized Storage Pointers

Stacking.sol

23info@blaze.tech

Code coverage and test
results for all files

Contract: Sale Factory

sales factory cannot be deployed with zero
addresses (1355ms)
getLastDeployedSale returns 0 when no sales is
deployed (220ms)
shows number of sales deployed (381ms)
return all sales (688ms)
sets allocation staking (386ms)

Contract: Peak DeFi Sale

user deposit to buy all tokens (1 tier, 1 user)
(2142ms)
withdraw multiple portion at once (1347ms)
unused amount of BUSDT is returned to user after
sale (1389ms)
allow user to register for sale if he staked enough
tokens (1249ms)

only admin can set vesting parameters (1210ms)
doesn't set invalid vesting parameters (153ms)
doesn't set vesting parameters if sum of
percentages is not 100 (261ms)
vesting parameters can be set only once
(270ms)
vesting parameterscannot be set before sale
parameters (107ms)

sale can be created only once (268ms)
sale owner cannot be zero address (82ms)
sale cann't be created with bad input (74ms)

PeakDeFi Smart Contact Audit

PeakDeFi Smart Contact Audit

24info@blaze.tech

registration time cannot be set before sale is
created (80ms)
registration time start has to be greater than
current time (176ms)
registration time end has to be smaller than
sale end time (321ms)

cannot register for sale with less staked
token than minimal amount (1208ms)
cannot register for sale twice from the same
account (1353ms)
can register only in registration time frame
(1365ms)

has to be at least 1 tier (81ms)
tier weights and tier points has to be the
same length (76ms)
tier weights cannot be zero (71ms)

user cad deposit tokens only once (577ms)

user cannot participate until sale is created
(74ms)
user can participate only in registration time
frame (187ms)
user can participate only once (1265ms)
user can't participate with 0 tokens (1001ms)
user has to be in whitelist to participate (1054ms)

user can't withdraw tokens before
tokensUnlockTime (1304ms)
user can't withdraw tokens if portion id is invalid
(1846ms)
user can't withdraw first portion if time hasn't
come (1742ms)

PeakDeFi Smart Contact Audit

25info@blaze.tech

user cant withdraw tokens before
tokensUnlockTime (1732ms)
user cant withdraw tokens if portion ids are invalid
(1813ms)
withdrawMultiplePortion is ignoring portions
that were withdrawn (2164ms)

admin can withdraw earnings (busdt)
(2793ms)
admin can withdraw not sold tokens
(2576ms)
admin can set token price (1265ms)

shows sale parameters UnlockTime and
PercentPerPortion (57ms)
shows if user is whitelisted (121ms)
shows maximum amount of tokens user can buy
(45ms)

Contract: Staking

only owner can set staking token (931ms)
deposit tokens (494ms)
pays percentages for 1st deposit to user if he
deposits second time (1137ms)
withdraw tokens after 13 days of staking with
unstake fee 30% (1103ms)
withdraw tokens after 27 days of staking with
unstake fee 20% (1347ms)
withdraw tokens after 55 days of staking with
unstake fee 10% (906ms)
withdraw tokens after 83 days of staking with
unstake fee 5% (1026ms)
withdraw tokens after 84 days of staking with
unstake fee 0% (1034ms)
does't allow user to withdraw more than user
deposited (445ms)

PeakDeFi Smart Contact Audit

26info@blaze.tech

FILE

SaleFactory.sol

Staking.sol

PeakDefiSale.sol

All files

100

100

100

% STMTS

100

100

100

95.74

% BRANCH

98.58

100

100

100

% FUNCS

100

Test

coverage

results

PeakDeFi Smart Contact Audit

27info@blaze.tech

Disclaimer
The information presented in this report is an intellectual property
of the customer including all presented documentation, code
databases, labels, titles, ways of usage as well as the information
about potential vulnerabilities and methods of their exploitation.
This audit report does not give any warranties on the absolute
security of the code. Blaize.Security is not responsible for how you
use this product and does not constitute any investment advice.

Blaize.Security does not provide any warranty that the working
product will be compatible with any software, system, protocol or
service and operate without interruption. We do not claim the
investigated product is able to meet your or anyone else
requirements and be fully secure, complete, accurate and free of
any errors and code inconsistency.

We are not responsible for all subsequent changes, deletions and
relocations of the code within the contracts that are the subjects
of this report.

You should perceive Blaize.Security as a tool which helps to
investigate and detect the weaknesses and vulnerable parts that
may accelerate the technology improvements and faster error
elimination.

