
Crypto Collective

SMART CONTRACT AUDIT

April 9th, 2022 / v.	1.0

CryptoCollective Smart Contact Audit

1info@blaze.tech

Table of

 Contents
Audit rating 2

Technical summary 3

The graph of vulnerabilities distribution 4

Severity Definition 5

Auditing strategy and Techniques applied \ Procedure 6

Executive summary 7

Complete​ Analysis 8

Code coverage and test results for all files 11

Disclaimer 13

Test coverage results 12

CryptoCollective Smart Contact Audit

2info@blaze.tech

CryptoCollective
contract’s source
code was taken from
the repository
provided by the
CryptoCollective
team.

SCORE 9.9/10

audit

 rating

The scope of the project is CryptoCollective set of
contracts:

Contracts were delivered from the repository with
contract and tests. 
https://github.com/cryptocollective/contract

CryptoCollectiveNFT1/

Initial commit:

df55f90090949d1ece16afc96b4a42586241de0f

Last reviewed commit:

7e70be7687943eee9cef438bd0049f0c66cbb9a0

https://github.com/cryptocollective/contract

CryptoCollective Smart Contact Audit

3info@blaze.tech

Technical

 summary

Testable code

In this report, we consider the security of the contracts for
CryptoCollective protocol. Our task is to find and describe security
issues in the smart contracts of the platform. This report presents
the findings of the security audit of CryptoCollective smart
contracts conducted between April 8th, 2022 - April 9th, 2022.

The testable code is 100%, which is above
the industry standard of 95%.

The scope of the audit includes the unit test coverage, that bases
on the smart contracts code, documentation and requirements
presented by the CryptoCollective team. Coverage is calculated
based on the set of Truffle framework tests and scripts from
additional testing strategies. Though, in order to ensure a security
of the contract Blaize.Security team recommends the
CryptoCollective team put in place a bug bounty program to
encourage further and active analysis of the smart contracts.

INDUSTRY STANDARD

your average

100%75%50%25%0%

CryptoCollective Smart Contact Audit

4info@blaze.tech

Critical

High

Medium

Low

Lowest

0

0

1

1

1

FOUND

0

0

1

1

1

FIXED/VERIFIED

The table below shows the number of found issues
and their severity. A total of 3 problems were
found. 3 issues were fixed or verified by the
CryptoCollective team.

33.3%

33.3%

33.3%

The graph of
vulnerabilities
distribution:

medium

low

LOWest

CryptoCollective Smart Contact Audit

5info@blaze.tech

Severity Definition

A system contains several issues ranked as very
serious
 and dangerous for users and the secure 
work of the
 system. Needs immediate 
improvements and further
 checking.

Critical

A system contains a couple of serious issues, which 
lead to unreliable work of the system and migh 
cause
 a huge information or financial leak. Needs
immediate improvements and further checking.

High

A system contains issues which may lead to
mediumfinancial loss or users’ private information
leak. Needs
 immediate improvements and further
checking.

Medium

A system contains several risks ranked as relatively 
small with the low impact on the users’ information 
and financial security. Needs improvements.

Low

A system does not contain any issue critical to the 
secure work of the system, yet is relevant for best

Lowest

CryptoCollective Smart Contact Audit

6info@blaze.tech

Auditing strategyand
Techniques applied \ Procedure

In our report we checked the contract with the following parameters:

Procedure

Whether the contract is secure;

Whether the contract corresponds to the documentation;

Whether the contract meets best practices in efficient use of gas,
code readability;

We have scanned this smart contract for commonly known and
more specific vulnerabilities:

Unsafe type inference;

Timestamp Dependence;

Reentrancy;

Implicit visibility level;

Gas Limit and Loops;

Transaction-Ordering
Dependence;

Unchecked external call -
Unchecked math;

DoS with Block Gas Limit;

DoS with (unexpected) Throw;

Byte array vulnerabilities;

Malicious libraries;

Style guide violation;

ERC20 API violation;

Uninitialized state/storage/ 
local variables;

Compile version not fixed.

Automated analysis:

Scanning contract by several public available automated analysis
tools such as Mythril, Solhint, Slither and Smartdec. Manual
verification of all the issues found with tools.

Manual audit:

Manual analysis of smart contracts for security vulnerabilities.
Checking smart contract logic and comparing it with the one
described in the documentation.

CryptoCollective Smart Contact Audit

7info@blaze.tech

Executive

 summary

The contract represents upgradeable NFT (corresponding to ERC721
and ERC1155 standards) with custom minting mechanism, which
relies on several rounds and verified signatures. The contract has
good code quality and has full native unit-test coverage.
 

All issues found during the audit were connected to the reentrancy
probability, which was marked as medium and low risk due to
specificalty of the conditions to recreate the exploit.

Nevertheless, issues were either resolved or verified by the
CryptoCollective team. Style issue left has no impact on the
contracts security.

** Contracts have good native coverage which was checked within
the scope of the audit. Nevertheless - security team has prepared
own set of tests.

Security

Gas usage and logic optimization

Code quality

Test coverage**

Total

9.9

9.7

10

10

9.9

RATING

CryptoCollective Smart Contact Audit

8info@blaze.tech

Complete​ Analysis

CryptoCollectiveNFT.sol: function claim().

In case message sender has sent more ETH than required(assertion
in Line 123) exceeded ETH should be sent back to the message
sender at the end of function execution(In order to avoid
reentrancy vulnerability).

Return extra ETH to the message sender.

medium Verified

Extra ETH verified to be withdrawn in the separate withdrawETH()
function by the owner.

Post-audit:

Resolved

CryptoCollectiveNFT.sol: function claim().

Contract CryptoCollectiveNFT.sol inherits ERC1155Upgradeable.sol
from OpenZeppelin library. In ERC1155Upgradeable.sol there is an
external call to an address which receives tokens in function
_doSafeTransferAcceptanceCheck() (Which is called within function
_mint()). Round information for the message caller about
purchased tokens is updated after _mint() is called, which can lead
to possible reentrancy attacks. Issue is marked as low, since only
users with a message, signed by the signer, are able to call
function claim() and purchase tokens.

Possible Reentrancy attack.

In order to protect the contract itself, either update info in mapping
“rounds” before minting is performed or use NonReentrant modifier
from OpenZeppelin contract ReentrancyGuardUpgradeable.sol. It
is also important to verify addresses, which receive signed
messages from the signer, so that those addresses are not
malicious contracts.

Recommendation:

low

CryptoCollective Smart Contact Audit

9info@blaze.tech

CryptoCollectiveNFT.sol: Lines 23-25.

Instead of defining each constant separately, enum can be used
as a set of constants for such values which starts from 0 and
increments by 1.

Enum can be used.

Use enum instead of defining constants.

Recommendation:

After the conversation with the CryptoCollective team, constants
usage was justified.

Post-audit:

lowest Verified

CryptoCollective Smart Contact Audit

10info@blaze.tech

Re-entrancy

Arithmetic Over/Under Flows

Access Management Hierarchy

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Delegatecall Unexpected Ether

Hidden Malicious Code

Default Public Visibility

External Contract Referencing

Entropy Illusion (Lack of Randomness)

Unchecked CALL Return Values

Short Address/ Parameter Attack

Race Conditions / Front Running

Signatures Replay

Tx.Origin Authentication

Pool Asset Security (backdoors in the
underlying ERC-20)

General Denial Of Service (DOS)

Floating Points and Precision

Uninitialized Storage Pointers

CryptoCollectiveNFT

11info@blaze.tech

Code coverage and test
results for all files

Contract: CryptoCollectiveNFT

has maxSupply set after initialize (448ms)
tokenURI of inner (1113ms)
tokenURI of collective (945ms)
name (352ms)
symbol (362ms)
opensea (382ms)
round (403ms)
signer (410ms)
can claim (710ms)
can claim with desired (753ms)
can not claim with incorrect signer (399ms)
claim requires correct round (331ms)
sets round data correctly after claim (496ms)
can not claim when paused (863ms)
can change min payable (767ms)
denies claiming more then allowed (542ms)
denies claiming more then allowed via split (827ms)
can claim under max supply (3739ms)
has a balance when paid (835ms)
can claim more in new round (2497ms)

CryptoCollective Smart Contact Audit

Cannot claim more than allowed in one round
(1229ms)
Round data updates correctly (1156ms)

As part of the audit process, Auditors team has checked and verified existing
native unit-test coverage. It was verified to sufficient for the security purpose,
contains all necessary tests to cover the business logic of the contract,

Auditors team has provided extra testing to check, that It is not possible to
buy more NFTs than allowed by signer in one round (especially with the same
signed message).

CryptoCollective Smart Contact Audit

12info@blaze.tech

FILE

CryptoCollectiveNFT.sol 100

% STMTS

95.45

% BRANCH

100

% FUNCS

Test

coverage

results

All files 100 95.45 100

The result includes CryptoCollective own set of unit tests, additional tests by Blaize

Security.

CryptoCollective Smart Contact Audit

13info@blaze.tech

Disclaimer
The information presented in this report is an intellectual property
of the customer including all presented documentation, code
databases, labels, titles, ways of usage as well as the information
about potential vulnerabilities and methods of their exploitation.
This audit report does not give any warranties on the absolute
security of the code. Blaize.Security is not responsible for how you
use this product and does not constitute any investment advice.

Blaize.Security does not provide any warranty that the working
product will be compatible with any software, system, protocol or
service and operate without interruption. We do not claim the
investigated product is able to meet your or anyone else
requirements and be fully secure, complete, accurate and free of
any errors and code inconsistency.

We are not responsible for all subsequent changes, deletions and
relocations of the code within the contracts that are the subjects
of this report.

You should perceive Blaize.Security as a tool which helps to
investigate and detect the weaknesses and vulnerable parts that
may accelerate the technology improvements and faster error
elimination.

