
SMART CONTRACT AUDIT

June 7th, 2022 / v.	1.0

Aurora Smart Contact Audit

1info@blaize.tech

Table of

 Contents
Audit rating 2

Technical summary 3

The graph of vulnerabilities distribution 4

Severity Definition 5

Auditing strategy and Techniques applied \ Procedure 6

Protocol overview 8

Executive summary 7

Complete​ Analysis 9

Code coverage and test results for all files (by Aurora)) 19

Code coverage and test results for all files (by Blaize.Security) 25

Test coverage results (by Blaize.Security) 30

Disclaimer 31

Test coverage results (by Aurora) 24

Aurora Smart Contact Audit

2info@blaize.tech

Aurora contract’s
source code was
taken from the
repository provided
by the Aurora team.

SCORE 9.9 /10

audit

 rating

The scope of the project is Aurora set of contracts:

Treasury.sol1/

AdminControlled.sol2/

JetStakingV1.sol3/

Initial commit

45f79c9ddcf8112d3dd4f1f31a9c4354dbb529e1

Last audited commit

e32dc4197bd3cb4db4178695e969f58b053821b3

develop branch

Repository:

https://github.com/aurora-is-near/aurora-staking-contracts

https://github.com/aurora-is-near/aurora-staking-contracts

Aurora Smart Contact Audit

3info@blaize.tech

Technical

 summary

Testable code

In this report, we consider the security of the contracts for Aurora
protocol. Our task is to find and describe security issues in the
smart contracts of the platform. This report presents the findings of
the security audit of Aurora smart contracts conducted between
May 2nd, 2022 - June 7th, 2022.

The testable code is 99,45%, which
corresponds to the industry standard of 95%.

The scope of the audit includes the unit test coverage, that bases
on the smart contracts code, documentation and requirements
presented by the Aurora team. Coverage is calculated based on
the set of Truffle framework tests and scripts from additional
testing strategies. Though, in order to ensure a security of the
contract Blaize.Security team recommends the Aurora team put in
place a bug bounty program to encourage further and active
analysis of the smart contracts.

INDUSTRY STANDARD

your average

100%75%50%25%0%

Aurora Smart Contact Audit

4info@blaize.tech

Critical

High

Medium

Low

Lowest

0

4

1

3

5

FOUND

0

4

0

3

5

FIXED/VERIFIED

The table below shows the number of found issues
and their severity. A total of 13 problems were
found. 12 issues were fixed or verified by the Aurora
team.

31%

8%

23%

38%

The graph of
vulnerabilities
distribution:

high

medium

low

LOWest

Aurora Smart Contact Audit

5info@blaize.tech

Severity Definition

A system contains several issues ranked as very
serious
 and dangerous for users and the secure 
work of the
 system. Needs immediate 
improvements and further
 checking.

Critical

A system contains a couple of serious issues, which 
lead to unreliable work of the system and migh 
cause
 a huge information or financial leak. Needs
immediate improvements and further checking.

High

A system contains issues which may lead to
mediumfinancial loss or users’ private information
leak. Needs
 immediate improvements and further
checking.

Medium

A system contains several risks ranked as relatively 
small with the low impact on the users’ information 
and financial security. Needs improvements.

Low

A system does not contain any issue critical to the 
secure work of the system, yet is relevant for best

Lowest

Aurora Smart Contact Audit

6info@blaize.tech

Auditing strategyand
Techniques applied \ Procedure

In our report we checked the contract with the following parameters:

Procedure

Whether the contract is secure;

Whether the contract corresponds to the documentation;

Whether the contract meets best practices in efficient use of gas,
code readability;

We have scanned this smart contract for commonly known and
more specific vulnerabilities:

Unsafe type inference;

Timestamp Dependence;

Reentrancy;

Implicit visibility level;

Gas Limit and Loops;

Transaction-Ordering
Dependence;

Unchecked external call -
Unchecked math;

DoS with Block Gas Limit;

DoS with (unexpected) Throw;

Byte array vulnerabilities;

Malicious libraries;

Style guide violation;

ERC20 API violation;

Uninitialized state/storage/ 
local variables;

Compile version not fixed.

Automated analysis:

Scanning contract by several public available automated analysis
tools such as Mythril, Solhint, Slither and Smartdec. Manual
verification of all the issues found with tools.

Manual audit:

Manual analysis of smart contracts for security vulnerabilities.
Checking smart contract logic and comparing it with the one
described in the documentation.

Aurora Smart Contact Audit

7info@blaize.tech

Executive

 summary

The contract contained several high risk issues connected to the
incorrect funds flow, incorrect streams handling and unclear
staking program. Though, the team has fixed these issues. 
All other issues were connected to missed checks and validations,
clarifications about the admin role functionality, and correct flow
of ETH receiving. Nevertheless, all security risk issues were fixed by
the team.  

The overall security is high, code is well documented, has good
native tests coverage. Auditor’s team has carefully reviewed smart
contract’s business logic, provided several rounds of testing and
verified the correctness of native protocol tests.

Security

Gas usage and logic optimization

Code quality

Test coverage

Total

9.7

9.9

10

10

9.9

RATING

Aurora Smart Contact Audit

PROTOCOL OVERVIEW

8info@blaze.tech

A u r o r a s t a k i n g - U s e r f l o w

Move Stream 1

rewards to

pending

Move Stream 2

rewards to

pending

AURORA rewards

compounds

Move Stream n

rewards to

pending

Stream 0

(AURORA stream)

Wait stream 1

release period

Withdraw stream

1 rewards

Withdraw stream

1 rewards

Withdraw stream

1 rewards

Stream 1

Unstake AURORA

deposits

Wait stream 2

release period

Wait AURORA

stream release

time

Withdraw initial

deposits + AURORA

stream rewards

Wait stream n

release period

Stream 2 Stream 3

Stake AURORA tokens to JetStaking

Start earning streams rewards

Deposits + stream 0 rewards

Stream 1

rewards

Stream 2

rewards

Stream n

rewards

USER

USER

mailto:info@blaize.tech

Aurora Smart Contact Audit

9info@blaize.tech

Complete​ Analysis

AdminControlled.sol: function adminSendEth().

Due to the Istanbul update there were several changes provided to
the EVM, which made .transfer() and .send() methods deprecated
for the ETH transfer. Thus it is highly recommended to use .call()
functionality with mandatory result check, or the built-in
functionality of the Address contract from OpenZeppelin library.
This should be done in order to mitigate any possible future update
of EVM for the Aurora network

Deprecated Eth transfer

Correct ETH sending functionality.

Recommendation:

Functionality of receiving or transferring ETH was removed.

Post-audit:

high Resolved

JetStakingV1: function cancelStreamProposal().

Currently there are validations that schedule has started and
stream is proposed in the function. However, the function is missing
validation, that the stream wasn’t actually activated by the stream
creator.

Missing validation that stream is not already activated.

Add a validation that the stream wasn’t activated.

Recommendation:

A flag was added to stream struct, which signalisies about the
state of stream. Only streams in state PROPOSED can be canceled.

Post-audit:

high Resolved

Aurora Smart Contact Audit

10info@blaize.tech

JetStakingV1.so�
�� Function proposeStream() should validate that parameter

“maxDepositAmount” == summation of values from array
“scheduleRewards” to make sure that stream owner will send
enough amount of reward token�

�� In case, stream owner sends less reward amount than
“maxDepositAmount”, the reward schedule is updated in
function _updateStreamRewardSchedules(). Currently, the
function doesn’t perform accurate calculation.

Example:�
�� reward schedule = [30, 20, 10, 0], maxDepositAmount = 6�
�� Stream owner sends 40 tokens instead of 60.

rewardTokenAmount = 4�
�� Function recalculates new reward schedule, where

suggestedAmount = rewardSchedule[0] (Line 1128�
� rewardSchedule[0] = rewardSchedule[0] * rewardTokenAmount /

suggestedAmount = 30 * 40 / 30 = 40�
� rewardSchedule[1] = rewardSchedule[1] * rewardTokenAmount /

suggestedAmount = 20 * 40 / 30 = 20 * 40 / 30 = 26.6�
� rewardSchedule[2] = rewardSchedule[2] * rewardTokenAmount /

suggestedAmount = 10 * 40 / 30 = 13.3.

Total schedule reward amount = 40 + 26.6 + 13.3 ~ 80, while stream
owner sent only 40 tokens.

Incorrect reward schedule update.

In order to recalculate the new reward schedule correctly,
suggestedAmount should be equal to previous summation of
rewards or “maxDepositAmount”. In this case, results of steps a-c in
example would be equal:

	suggestedAmount = maxDepositAmount = 60�

� rewardSchedule[0] = rewardSchedule[0] * rewardTokenAmount /
suggestedAmount = 30 * 40 / 60 = 20.

Recommendation:

high Resolved

Aurora Smart Contact Audit

11info@blaize.tech

� rewardSchedule[1] = rewardSchedule[1] * rewardTokenAmount /
suggestedAmount = 20 * 40 / 60 = 20 * 40 / 30 = 13.3�

� rewardSchedule[2] = rewardSchedule[2] * rewardTokenAmount /
suggestedAmount = 10 * 40 / 60 = 6.6.

Total schedule reward amount = 20 + 13.3 + 6.6 ~ 40 which is a new
rewardTokenAmount.

AdminController.sol

Variable “admin” is not initialized during the call of initializer
function __AdminControlled_init(). The only way to initialize the
variable is an additionally call of transferOwnership(). The issue is
marked as High since in case transferOwnership() wasn’t called on
time, any tokens might potentially be transferred to the zero
address in contract JetStakingV1.sol(Lines 278, 311, 356, 364).

Variable admin is not initialized.

Initialize variable “admin” during execution of function
__AdminControlled_init()

Recommendation:

Variable “admin” was removed from the contract. Any tokens,
necessary to be sent back, are now sent to the address“manager”
from struct Stream, which is assigned to msg.seder when creating
the stream.

Post-audit:

high Resolved

A require statement was added in _validateStreamParameters(),
which validates that “maxDepositAmount” equals to
rewardSchedule[0] instead of a sum of all rewardSchedules, which
forbids owner to deposit the amount, necessary for all reward
schedules. Based on the logic of the contract, maxDepositAmount
should be equal to summation of all values from the
rewardSchedule array.

 It was verified that the first value from the array is a total amount
of reward for stream, which makes calculations accurate. Verifying
that “maxDepositAmount” equals to rewardSchedule[0] is a correct
check.

Post-audit:

Aurora Smart Contact Audit

12info@blaize.tech

JetStakingV1.sol: function _before() (Line 934), function
_moveAllRewardsToPending() (Line 991), function stake() (1042).

Iteration through a storage array might consume more gas than
allowed per transaction, thus functions will always revert. Loop will
also iterate through canceled streams or streams where the
reward schedule is finished.

Variable admin is not initialized.

Consider removing streams from the array. Streams, which are
canceled in functions cancelStreamProposal(), removeStream() can
be removed from an array. An additional function can be added to
remove streams whose reward schedules are finished.

Recommendation:

Client is aware of this issue. It is agreed that there won’t be more
than 10 streams currently. The issue will be fixed later, including the
optimization of the formula of RPS calculations.

Post-audit:

Medium Aknowledged

JetStakingV1: function _validateStreamParameters().

Contract Treasury.sol supports only whitelisted tokens(For example,
when paying rewards), so provided “rewardToken” should be
validated to be supported during the proposing of the stream.
Issue is marked as low, since only the admin can create a proposal
for a stream, however the validation should still be added to the
contract.

Validate that reward token is whitelisted.

Validate that Treasury supports “rewardToken”.

Recommendation:

low Resolved

Aurora Smart Contact Audit

13info@blaize.tech

JetStakingV1: missing visibility for ONE_MONTH, FOUR_YEARS,
RPS_MULTIPLIER, maxWeight, minWeight, users, streams.

Missing visibility identifier.

Set variable visibility.

Recommendation:

low Resolved

JetStakingV1: function _validateStreamParameters().

Currently, the start of rewards schedule must be greater than
current block.timestamp(Validation on Line 1095), thus, it is possible
to pass scheduleTimes[0] with low difference with current
timestamp, so that the creator of stream will not have enough time
to activate the stream.

Add a minimum period of time between current timestamp and the
start of schedule.

Add a minimum period of time between scheduleTimes[0] and
block.timestamp to make sure the stream creator has enough time
to activate the stream.

Recommendation:

low Resolved

Aurora Smart Contact Audit

14info@blaize.tech

AdminControlled.sol: function adminReceiveEth().

A receive() function can be defined instead of a payable function
with an empty body to allow a contract to receive Eth. Also, based
on the name of the function(started with word “admin”) function
might be restricted to be executed only by admin.

receive() can be defined instead of a function.

Use receive() instead of a function with an empty body to receive
Eth. Example: receive() external payable {}.

Verify, that function should not be restricted.

Recommendation:

Functionality of receiving ETH was removed.

Post-audit:

lowest Resolved

JetStakingV1: function _validateStreamParameters().

Parameter “tau” should be validated in order not to be equal to
extremely big values, due to which users won’t be able to withdraw
their pending rewards.

Validate “tau” parameter.

Validate that “tau” is not equal to big value and doesn’t block users
from withdrawing their pending rewards.

Recommendation:

lowest Resolved

Aurora Smart Contact Audit

15info@blaize.tech

JetStakingV1: function removeStream().

The rest of the rewards are moved to the address
“streamFundReceiver” which is not necessary to be a stream owner.
However, the comment section before transferring rewards (Line
363) says that the rest of rewards are transferred to the creator of
the stream.

Admin is able to provide any fund receiver when removing a
stream.

Either confirm that admin has to provide the address of the
receiver of rewards or transfer the rest of the rewards to stream
owner address which is stored in Stream struct.

Recommendation:

Admin should be able to provide an arbitrary address for receiving
funds. Documentation in the contract is updated to correspond
this.

From client:

lowest Verified

AdminControlled.sol: function adminDelegatecall().

Function performs delegate call to an arbitrary address, which can
cause unknown effects. For example, storage variables might be
corrupted and prevent protocol from operating correctly or tokens
can be withdrawn from treasury. Issue is marked as info since only
an admin can call this function, however admin rights are
supposed to be transferred to DAO, which will be driven by a
community. This can potentially be used by malicious actors.

Delegate call to an arbitrary address.

Either remove delegate call to an arbitrary address or add a
whitelist of address to which delegate call can be performed.

Recommendation:

Client verified that function is required by the contract and cannot
be removed. Whitelisting of target addresses will happen on the
side of admin. Client is also aware of the risks which might take
place in case admin rights are granted to DAO contract.

Post-audit:

lowest Verified

Aurora Smart Contact Audit

16info@blaize.tech

Treasury.sol

It needs to be reflected in the report, that the admin has full control
of the treasury, thus he decides of the amounts of tokens
withdrawn from the treasury.

Admin controls treasury rewards.

Add restrictions or verify that the ownership will transferred to the
DAO.

Recommendation:

Moving tokens to DAO tokens would be the next step in increasing
the security of funds.

From client:

lowest Verified

Aurora Smart Contact Audit

17info@blaize.tech

Re-entrancy

Arithmetic Over/Under Flows

Access Management Hierarchy

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Delegatecall Unexpected Ether

Hidden Malicious Code

Default Public Visibility

External Contract Referencing

Entropy Illusion (Lack of Randomness)

Unchecked CALL Return Values

Short Address/ Parameter Attack

Race Conditions / Front Running

Signatures Replay

Tx.Origin Authentication

Pool Asset Security (backdoors in the
underlying ERC-20)

General Denial Of Service (DOS)

Floating Points and Precision

Uninitialized Storage Pointers

Treasury.sol

Aurora Smart Contact Audit

18info@blaize.tech

Re-entrancy

Arithmetic Over/Under Flows

Access Management Hierarchy

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Delegatecall Unexpected Ether

Hidden Malicious Code

Default Public Visibility

External Contract Referencing

Entropy Illusion (Lack of Randomness)

Unchecked CALL Return Values

Short Address/ Parameter Attack

Race Conditions / Front Running

Signatures Replay

Tx.Origin Authentication

Pool Asset Security (backdoors in the
underlying ERC-20)

General Denial Of Service (DOS)

Floating Points and Precision

Uninitialized Storage Pointers

JetStakingV1.solAdminControlled.sol

19info@blaize.tech

Code coverage and test
results for all files

by aurora team

Contract: AdminControlled

should admin able to pause the contract (422ms)
should pause role able to pause the contract and
only admin can unpause the contract (234ms)
should allow admin to change the storage layout
using admin SSTORE (103ms)
should allow admin to change SSTORE with mask
(94ms)
should allow admin to delegate call (146ms)

 Contract: JetStakingV1

should test multiple stakers reward calculation
(1867ms)
should test multiple stakers compound reward
during 6 months (520ms)
should test multiple stakers compound reward
during 1 year (875ms)
should return treasury account
should allow admin to propose new stream
(243ms)
should allow stream owner to create a stream
(451ms)
should refund stream owner when stream created
with less rewards (528ms)
should create stream and refund staking admin if
deposit reward is less than the upper amount
(680ms)
should release aurora rewards to stream owner
(870ms)
should stake aurora tokens (153ms)

Aurora Smart Contact Audit

Aurora Smart Contact Audit

20info@blaize.tech

should not release new rewards in the same block
(196ms)
user stakes and never claims (345ms)
should able to get schedule times per stream
should be able to get reward per share
should schedule from 0 to 4 years (168ms)
should schedule from 1 to 2 years (171ms)
should schedule from 1 to 3 (160ms)
should schedule from 0 to 1 (207ms)
should schedule from 0 to now (200 days)
should schedule from 0 to now (400 days) (231ms)
should schedule from 0 to now (750 days)
(248ms)
should schedule from 200 to now (750 days)
(246ms)
should schedule from 200 to end (4 years) (156ms)
should schedule from 200 to end (3 years) (168ms)
should schedule from 400 to end (3 years) (147ms)
should schedule from 400 to end of (3rd year) + 2
day (187ms)
should stake on behalf of another user (948ms)
should batch stake on bahalf of another users
(480ms)
should get user shares
should get release time (451ms)
should withdraw rewards after release time (513ms)
should claim on behalf of another user (692ms)
should batch claim on behalf of other users
(2274ms)
should get zero stream owner claimable amount if
stream is inactive (243ms)
should return aurora stream user shares if stream
is zero (359ms)
should return total amount of staked aurora
(167ms)
should get zero reward amount before stream
start and stream end (296ms)

Aurora Smart Contact Audit

21info@blaize.tech

should claim zero reward if stream did not start
(733ms)
should return if _before called twice whithin the
same block
should withdraw all rewards after release time
(2229ms)
should unstake all (417ms)
should claim all rewards (678ms)
should get reward per share for user (502ms)
should calculate weighted shares (80ms)
should get reward per share for a user (777ms)
should get claimable amount (818ms)
should restake the rest of aurora tokens (763ms)
should return zero total aurora staked if touchedAt
equals zero
should release rewards from stream start (530ms)
should calculate stream claimable rewards from
stream start (572ms)
should claim rewards for a stream even if user
staked before stream deployment (680ms)
should be able to unstake and withdraw even if
after the schedule ends (434ms)
should only admin update the treasury address
(526ms)
should admin remove stream (551ms)
should admin cancel stream proposal after expiry
date (321ms)
admin can claim streams on behalf of another
user (1803ms)
estimageGas staking with multiple streams
(15992ms)
estimageGas claiming all with multiple users
(4219ms)
should not return zero stake value when a user
unstakeAll (1474ms)

Aurora Smart Contact Audit

22info@blaize.tech

should user 1 stakes before user 2 but both stake
very small but the same amount and unstake at
the same time (1261ms)
should both users get the same reward if they
stake and unstake the same amount at the same
time (1039ms)
should user 2 should get double rewards if he has
a double stake (1038ms)
should return the right share calculations (1440ms)
should return the right share calculations 2
(1322ms)
should user 0 stake, then two new users stake and
unstake the same amount at the same time
(1347ms)
should not have a possible race condition (1618ms)

 Contract: Treasury

should allow transfer ownership (75ms)
should allow only owner pay rewards (83ms)
should allow only manager add supported token
(45ms)
should allow only manager to remove supported
token (107ms)
should allow only manager to add a new
manager (269ms)
should allow only manager to remove a manager
(257ms)
should allow default admin role to withdraw some
aurora funds (80ms)

 Contract: JetStakingV1Upgrade

should test JetStakingV1 change function
signature (724ms)
should test JetStakingV1 change in storage
(1981ms)
should test JetStakingV1 change in storage and
logic (517ms)
should test JetStakingV1 extra functionality (378ms)

Aurora Smart Contact Audit

23info@blaize.tech

 Contract: TreasuryUpgrade

should test Treasury change function signature
(286ms)
should test Treasury change in storage (283ms)
hould test Treasury change in storage and logic
(357ms)
should test Treasury extra functionality (272ms)

Aurora Smart Contact Audit

24info@blaize.tech

FILE

AdminControlled.sol 100

% STMTS

75

% BRANCH

100

% FUNCS

JetStakingV1.sol 99.31 67.31 100

Treasury.sol 100 50 100

Test

coverage

results

All files 99.37 66.86 100

by aurora team

25info@blaize.tech

Code coverage and test
results for all files

by blaize.security team

Contract: AdminControlled

Should set pause (173ms)
Should not perform delegate call to self address
(86ms)
Should not perform delegate call to zero address
(66ms)

 Contract: JestStakingV1

Should revert initialize if max weight < min weight
(472ms)
Should revert initialize if invalid address provided
(366ms)
Should revert initialize if schedule values are
invalid (745ms)
Should revert initialize if tau period equals 0
(282ms)
Should revert initialize if schedule time is invalid
(282ms)
Should revert initialize if schedule reward is invalid
(369ms)
Should revert initialize if end reward is not zero
(367ms)
Should not propose stream if owner address is
zero (476ms)
Should not propose stream if reward token
address is zero (366ms)
Should not propose stream if max deposited
amount is zero (257ms)
Should not propose stream if stream expiration
date is in the past (524ms)

Aurora Smart Contact Audit

Aurora Smart Contact Audit

26info@blaize.tech

Should not propose stream if schedule values are

invalid (355ms)

Should not propose stream if tau value is zero

(439ms)

Should not propose stream if stream schedule

times are invalid (646ms)

Should not propose stream if stream

schedule rewards are invalid (415ms)

Should not propose stream if stream schedule

end reward is not zero (507ms)

Should not create stream if stream is not

proposed (588ms)

Should not let not owner of stream create (398ms)

Should not let create stream more than once

(996ms)

Should not let create stream if proposal expired

(572ms)

Should not let create stream if reward amount >

max deposit amount (589ms)

Should not let remove aurora stream (100ms)

Should not let remove not active stream (554ms)

Should return zero claimable amount for owner if

stream not active (555ms)

Should not release aurora rewards if called not by

stream owner (505ms)

Should not release aurora rewards if stream not

active (535ms)

Should not let change treasury address to zero

(92ms)

Should not stake on behalf of users if arrays

length mismatch (197ms)

Should not stake on behalf of users if batch

amount is invalid (562ms)

Should claim on behalf of another user (1419ms)

Should batch claim on behalf of other users

(1158ms)

Aurora Smart Contact Audit

27info@blaize.tech

Should not let withdraw rewards before release
time (1378ms)
Should not batch withdraw before release time
(1878ms)
Should not move rewards to pending if stream is
not active (400ms)
Should return aurora shares if aurora stream
provided (247ms)
Should return 0 reward amount if stream not
started yet or finished (795ms)
Should not return latest RPS for aurora stream id
(77ms)
Should not return latest RPS if total stream shares
is 0 (41ms)
Should return total amount of staked aurora
(390ms)
Should not get start and end index if wrong
parameters (682ms)
Should not return reward schedule start <
schedule beginning (703ms)
Should not return reward schedule end > schedule
finish (777ms)
Should not move rewards to pending if aurora
stream id provided (953ms)
Should not move rewards to pending if stream not
started yet (1012ms)
Should not move rewards to pending for not
active stream (1234ms)
Should not let unstake 0 (427ms)
Should not let unstake more than stake balance
(701ms)
Should revert unstaking if user shares are zero
(291ms)
Should revert initialise if treasury address is zero
(260ms)
Should revert initialise if unsupported token
provided (283ms)

Aurora Smart Contact Audit

28info@blaize.tech

Should revert proposing stream if min deposit
amount is zero (193ms)
Should revert proposing stream if min deposit
amount > max deposit amount (176ms)
Should revert proposing stream if max deposit
amount not equal
 rewardSchedule[0] (202ms)
Should revert proposing stream if unsupported
token provided (221ms)
Should revert canceling stream if stream is not in
proposed state (65ms)
Should revert creating stream if reward amount <
min deposit amount (381ms)
Should not release rewards for owner for stream 0
(52ms)
Should return zero rewards if last update > stream
end (619ms)

 Contract: Treasury

Should revert initialize if provided token is zero
(185ms)
Should not add already supported token (81ms)
Should not remove unsupported token (114ms)
Should not pay reward in unsupported token
(101ms)

 Contract: User flow

Creating stream 1 (650ms)
Creating stream 2 (537ms)
Creating stream 3 (574ms)
User1 stakes AURORA tokens (316ms)
User2 stakes AURORA tokens (982ms)
User1 and User2 move rewards to pending for
stream 1 (1202ms)
User1 and User2 move rewards to pending for
stream 2 (929ms)
User1 and User2 move rewards to pending for
stream 3 (1258ms)
Waiting release period for streams 1, 2, 3

Aurora Smart Contact Audit

29info@blaize.tech

User1 and user2 withdraw rewards for stream 1
(444ms)
User1 and user2 withdraw rewards for stream 2
(453ms)
User1 and user2 withdraw rewards for stream 3
(436ms)
User1 and user2 unstake AURORA (1510ms)
Waiting release period for AURORA stream
User1 and user2 withdraw rewards for AURORA
stream (473ms)

Aurora Smart Contact Audit

30info@blaize.tech

FILE

AdminControlled.sol 100

% STMTS

100

% BRANCH

100

% FUNCS

JetStakingV1.sol 100 97.44 100

Treasury.sol 100 100 100

Test

coverage

results

All files 99.45 95.56 98.78

by blaize.security team

Aurora Smart Contact Audit

31info@blaize.tech

Disclaimer
The information presented in this report is an intellectual property
of the customer including all presented documentation, code
databases, labels, titles, ways of usage as well as the information
about potential vulnerabilities and methods of their exploitation.
This audit report does not give any warranties on the absolute
security of the code. Blaize.Security is not responsible for how you
use this product and does not constitute any investment advice.

Blaize.Security does not provide any warranty that the working
product will be compatible with any software, system, protocol or
service and operate without interruption. We do not claim the
investigated product is able to meet your or anyone else
requirements and be fully secure, complete, accurate and free of
any errors and code inconsistency.

We are not responsible for all subsequent changes, deletions and
relocations of the code within the contracts that are the subjects
of this report.

You should perceive Blaize.Security as a tool which helps to
investigate and detect the weaknesses and vulnerable parts that
may accelerate the technology improvements and faster error
elimination.

