
SMART CONTRACT AUDIT

February 10th 2023 / v.	2.0

LiquidAccess NFT Smart Contact Audit

1info@blaize.tech

Table of

 Contents
Audit rating 2

Technical summary 3

The graph of vulnerabilities distribution 4

Severity Definition 5

Auditing strategy and Techniques applied/Procedure 6

Executive summary 7

Contract overview 9

Complete​ Analysis (1st iteration) 10

Complete​ Analysis (2nd iteration) 15

Code coverage and test results for all files by
Blaize Security team (1st iteration)

18

Code coverage and test results for all files by
LiquidAccess NFT team

20

Code coverage and test results for all files by
Blaize Security team (2nd iteration)

23

Disclaimer 24

LiquidAccess NFT Smart Contact Audit

2info@blaize.tech

LiquidAccess NFT
contract’s source
code was taken from
the repository
provided by the
Spectre LiquidAccess
NFT team.

SCORE 9.9 /10

audit

 rating

The scope of the project for the 1st iteration included
LiquidAccess NFT set of contracts:

� LiquidAccess.sol:

Initial commit:

87b64635e54488db466424d883d62332ebc4f1ac

https://github.com/liquidaccess/nft/pull/1,
8ccc6eba28f1fae0a1b2459aa5eead6aa7ae4aca

Repository:

https://github.com/liquidaccess/nft, master branch

Last-audited commit:

Initial commit:

4bcf3bbafb95d0270b189501298133837263bf17

539228bcd92b6d049d66e44d13c59d8fb69396a0

Repository:

https://github.com/liquidaccess/nft, develop branch

Last-audited commit:

� contracts/LiquidAccess.sol

The scope of the project for the 2nd iteration included
LiquidAccess NFT set of contracts:

https://github.com/liquidaccess/nft/commits/master
https://github.com/liquidaccess/nft/pull/1

LiquidAccess NFT Smart Contact Audit

3info@blaize.tech

Technical

 summary

Testable code

During the audit, we examined the security of smart contracts for the
LiquidAccess NFT protocol. Our task was to find and describe any
security issues in the smart contracts of the platform. This report
presents the findings of the security audit of the LiquidAccess NFT
smart contracts conducted during November 21st, 2022 - November
25th, 2022.

2nd iteration of the audit was conducted during February 2nd, 2023 -
February 10th, 2023.

The testable code has sufficient coverage,
which is above the industry standard of 95%.

The scope of the audit includes the unit test coverage, which is
based on the smart contracts code, documentation, and
requirements presented by the LiquidAccess NFT team. The
coverage is calculated based on the set of the Hardhat framework
tests and scripts from additional testing strategies. However, in
order to ensure full security of the contract, the Blaize.Security team
suggests the LiquidAccess NFT team launch a bug bounty program
to encourage further active analysis of the smart contracts.

INDUSTRY STANDARD

your average

100%75%50%25%0%

LiquidAccess NFT Smart Contact Audit

4info@blaize.tech

Critical

High

Medium

Low

Lowest

0

0

0

1

14

FOUND

0

0

0

1

13

FIXED/VERIFIED

The table below shows the number of the
detected issues and their severity. A total of 14
problems were found. No critical issues were
found. Most of the issues were fixed by the
LiquidAccess NFT team.

94%

6%

The graph of
vulnerabilities
distribution:

critical

high

medium

low

LOWest

LiquidAccess NFT Smart Contact Audit

5info@blaize.tech

Severity Definition

The system contains several issues ranked as very
serious
and dangerous for users and the secure 
work of the
system. Requires immediate 
fixes and a further check.

Critical

The system contains a couple of serious issues, which 
lead to unreliable work of the system and migh 
cause
a huge data or financial leak. Requires immediate
fixes and a further check.

High

The system contains issues that may lead to
medium financial loss or users’ private information
leak. Requires
immediate fixes and a further
check.

Medium

The system contains several risks ranked as relatively 
small with the low impact on the users’ information 
and financial security. Requires fixes.

Low

The system does not contain any issues critical to the 
secure work of the system, but best practices should
be implemented.

Lowest

LiquidAccess NFT Smart Contact Audit

6info@blaize.tech

Auditing strategy and
Techniques applied/Procedure

We checked the contract for the following parameters:

Procedure

Whether the contract is secure;

Whether the contract corresponds to the documentation;

Whether the contract meets the best practices in the efficient use of
gas, code readability.

We have scanned this smart contract for commonly known and
more specific vulnerabilities:

Unsafe type inference;

Timestamp Dependence;

Reentrancy;

Implicit visibility level;

Gas Limit and Loops;

Transaction-Ordering
Dependence;

Unchecked external call -
Unchecked math;

DoS with Block Gas Limit;

DoS with (unexpected) Throw;

Byte array vulnerabilities;

Malicious libraries;

Style guide violation;

ERC20 API violation;

Uninitialized state/storage/ 
local variables;

Compile version not fixed.

Automated analysis:

Scanning contract by several publicly available automated
analysis tools such as Mythril, Solhint, Slither, and Smartdec.
Manual verification of all the issues found with these tools.

Manual audit:

Manual analysis of smart contracts for security vulnerabilities.
We checked smart contract logic and compared it with the one
described in the documentation.

LiquidAccess NFT Smart Contact Audit

7info@blaize.tech

Executive

 summary
 During the audit, the Blaize security team carefully checked the
core contract of LiquidAccess NFT - LiquidAccess.sol. The goal of
the audit was to verify that the best Solidity practices are applied,
the contract corresponds to the ERC721 standard. It was also
required to ensure the safety of minting, transfering, and other
standard processes of an NFT contract.

 No critical issues were found in the contract. Though, one low
and several informational problems were discovered. The low issue
was connected to the absence of one validation parameter,
during which tokens can’t be transferred. The informational issues
were connected to the violation of the Solidity code style,
optimizations, and bussiness-logic features validations. Most of the
issues were succesfully fixed by the LiquidAccess NFT team.

 The overall security of the contract is high enough. The contract
corresponds to the NFT standard in a secure way. The provided
repository contains a sufficient tests coverage provided by the
LiquidAccess NFT team. The Blaize security team has also prepared
their own set of additional testing scenarios.

LiquidAccess NFT Smart Contact Audit

8info@blaize.tech

Security

Gas usage and logic optimization

Code quality

Test coverage*

Total

9.9

10

9.8

9.9

9.9

RATING

 During the second iteration audit, the Blaize security team
checked changes in the LiquidAccessNFT contract. The team
added new functionality and interfaces; therefore, NFT received
new methods. During the audit (after the notice from the auditors),
the LiquidAccess team added a public burn() function. In this way,
they have closed several info issues from the previous iteration.
Despite functioning burn(), auditors should notice that it creates a
possible vulnerability for NFTs burn from the upgradeable
contracts. Though, the risk of the exploit is low, and auditors advise
providing sanitizing policy for the protocols and marketplaces that
will utilize these NFTs.

 During the 2nd iteration, auditors found several info issues and
prioritized unresolved issues from the previous iteration again. The
LiquidAccess team resolved all mentioned issues except the one
connected with the global lock time update.

 Auditors should also mention that one of the most important
changes in the NFT is functionality for the NFT URI update, which is
delegated to the minter role.

 The overall security of the contract is still high enough, and the
contract corresponds to the NFT standard securely.

* LiquidAccess NFT team has prepared a solid set of unit-tests.
Blaize security team has prepared their own set of additional test-
cases as well.

LiquidAccess NFT Smart Contact Audit

9info@blaize.tech

C o n t r a c t o v e r v i e w

 LiquidAccess.sol is an NFT contract that implements the ERC721
NFT standard, ERC2981 royalty standard, ERC721Burnable,
ERC721URIStorage, and ERC4906 Metadata Update Extension.
During the contract deployment, the token’s name, symbol,
merchant, and merchant ID are set in the storage.

 The minting flow of the contract contains the safeMint() function
and batchMint(), which can be executed only by the minter of the
contract. During the safeMint() function, the minter can specify the
recipient, subscription type, and token expiration. During
batchMint() function, the minter can mint a series of NFTs and send
them to the recipient accounts. Also, the contract contains the
burn function now (added during the latest update). There are also
setters, which allow the owner to change the subscription type and
expiration of the existing tokens. Also, the contract contains
additional setters, enabling the owner to set the following
information about the contract: royalty, lockup period, users and
NFTs blacklist, NFT and contract’s name, description, and image.

 There is also a blacklist for users and NFTs in the contract. The
owner can add or remove users and NFTs from the blacklist.
Blacklisted users are forbidden from transferring or receiving NFTs,
while blacklisted tokens can’t be transferred.

 Additionally, there is a lockup period between transfers of the
tokens. For example, if the lockup period is set to 1 day, each NFT
can be transferred only once a day.

mailto:info@blaize.tech

LiquidAccess NFT Smart Contact Audit

10info@blaize.tech

Complete​ Analysis (1st iteration)

LiquidAccess.sol: setLockupPeriod().

There is no validation in this function that the p̀eriod ̀ parameter is
not equal to large
values. In case a large value is passed in this
function, it can potentially block any
other transfers of the NFT
(since the lock up period of the NFT isn’t updated when global

_lockupPeriod ̀is updated). The issue is marked as low since the
owner should
validate which value is passed in this function.
Though it is still recommended to add
a maximum limit which the
p̀eriod ̀ parameter could not exceed.

Lock period can be set to large values.

Validate that the p̀eriod ̀ parameter doesn’t exceed a certain
value.

Recommendation:

Low-1 Resolved

LiquidAccess.sol: lines 22, 23

Mapping m̀apping(address => address) ̀can be changed to
m̀apping(address
=>bool),̀ and m̀apping(uint256 => uint256) ̀to
m̀apping(uint256 => bool).̀ Though
the current solution works well
and doesn’t lead to any vulnerabilities, using
booleans instead will
improve readability and code clarity.

Blacklist mappings can use boolean values to indicate if the value
is blacklisted.

Change mappings and relevant functions.

Recommendation:

LOWEST-1 Resolved

LiquidAccess NFT Smart Contact Audit

11info@blaize.tech

LiquidAccess.sol: functions setLockupPeriod(), addNFTToBlacklist(),

removeNFTFromBlacklist(), addAddressToBlacklist(),

removeAddressFromBlacklist(), setContractName(),
setContractDescription(),
setContractImage().

Mapping and variables inside the LiquidAccess contract can be
changed without an
event. Thus, it can be complicated to parse
and update data related to this contract.

Some variables are changed without an event.

Add events for every storage change. It is advised to indicate

the previous and new values.

Recommendation:

LOWEST-2 Resolved

LiquidAccess.sol: lines 16-23, 121-122, 247-249

The variables can be set to public, so default getters will be
created. Since this contract
isn’t inherited by any other contracts,
there is no point of making these variables
private. Thus, security is
not a concern in this case.

Explicit getters can be omitted in favor of the default ones.

Remove explicit getters and make the variables public.

Recommendation:

Issue was resolved during the 2nd audit iteration

Post-audit:

LOWEST-3 Resolved

LiquidAccess NFT Smart Contact Audit

12info@blaize.tech

LiquidAccess.sol: 121-122, 247-249, etc

Solidity style guide (the order of layout) is violated, which makes the
code harder to read.

Style guide violation.

Change your contract so as to comply with the style guide

(especially the order of layout). You can also split the contract into
several parts to divide
logic and variables for readability.

Recommendation:

LOWEST-4 Resolved

LiquidAccess.sol: functions contractURI(), lockupLeftOf(),
lockupPeriod(),
isNFTBlacklisted(), isAddressBlacklisted(),
merchantName(), merchantId().
In order to decrease gas spending,
some of public functions that aren’t used within
other functions
can be marked as external.

Functions can be marked as external.

Mark the aforementioned functions as external.

Recommendation:

LOWEST-5 Resolved

LiquidAccess.sol: function lockupLeftOf(), lines 126,129.

Since 0̀ ̀value is returned in both branches, they can be united to
improve
code readability.

Conditions can be united in one ìf.̀

Unite conditions of ìfs̀ with || operator.

Recommendation:

LOWEST-6 Resolved

LiquidAccess NFT Smart Contact Audit

13info@blaize.tech

When _̀lockupPeriod ̀is updated, the personal lockup of each NFT
that is
currently locked for transfers is not updated. The issue is
marked as info since it
doesn’t expose any danger and might be a
part of the bussiness logic.

It impacts the logic in _beforeTokenTransfer function where the
check is performed before the transfer and NFT may stay locked
even if locktime is set to 0. It also may impact the usage of
lockupLeftOf() function It can be resolved by additional check
against the _lockupPeriod being set.

Personal NFT lock up is not updated in case global lock up period
is updated. LiquidAccess.sol

Recommendation: Verify that the personal lockup for each NFT
should not be affected when the global lockup period is
changed. OR add additional check in _beforeTokenTransfer ()
and lockupLeftOf() against the _lockupPeriod.

LOWEST-7 Unresolved

Though such functionality is a part of the bussiness logic and isn’t
considered as
security threat, it should be noted that the owner of
the contract can blacklist any
user and NFT so that such a user
can’t transfer or receive NFTs and such an NFT
can’t be transferred.

Post-audit: Verified to be a part of the bussiness logic in order to
prevent any suspicous actions on the contract.

Users and NFTs can be blacklisted.

LOWEST-8 Verified

LiquidAccess NFT Smart Contact Audit

14info@blaize.tech

LiquidAccess.sol: function addNFTToBlacklist().

Though only the owner can execute this function and validate that an
existing NFT is
passed only, it is recommended to validate that a
provided _̀nft ̀exists.

The owner can blacklist a non-existing NFT.

lowest-9 Resolved

LiquidAccess inherits ERC721 contract, which contains internal _burn()
function but it does not implement public burn function. LiquidAccess
overrides default _burn() and has checks for burn in beforeTransfer
function, but does not implement the public function for NFTs burn.

Note: Issue was updated during the 2nd audit iteration.

Tokens cannot be burned.

lowest-10 Resolved

There is no need to check transfer to zero address because error “ERC721:
transfer to
the zero address” will be raised at ECR721 contract.

Note: issue was resolved during the 2nd audit iteration (with added burn()

Recommendation: Remove the unreachable branch.

Unreachable branch at line 103.

lowest-11 Resolved

Validate that the _̀nft ̀ parameter exists before blacklisting.

Recommendation:

Verify that you do not need burn() functionality and so unnecessary code
can be removed OR implement public burn functionality if you need such.

Recommendation:

“Burn” was added with no restrictions. Therefore, the owner of the NFT can
freely burn it. Auditors should note that unrestricted burn can open an
exploit for upgradeable contracts that will hold NFT. So, it is additionally
recommended to provide sanitizing policy for 3rd party contracts which
may hold NFTs; or limit NFTs usage only within the protocol and trustable
marketplaces.

Post-audit:

LiquidAccess NFT Smart Contact Audit

15info@blaize.tech

LiquidAccess.sol: variables _merchantName, _merchantId.

It is recommended to have variables marked as public and
immutable - in case if they are set just once in the constructor .
Also, additional getters are unnecessary, since more efficient
public getters are generated for public variables by default.

Recommendation:

Mark variables as public (and remove extra getters) and
immutable. Or verify that existent visibility is necessary and only
immutability is required

Variables should be immutable.

lowest-2 Resolved

LiquidAccess.sol: permit(), lines 263-267; setLockupPeriod(), line 355;
_beforeTokenTransfer(), lines 445, 450, 455, 458.

Starting from the 0.8.4 version of Solidity, it is recommended to use
custom errors instead of “require” statements and storing error
message strings in storage. Custom errors are more efficient in
terms of gas spending and they increase code readability.

Custom errors should be used.

lowest-1 Resolved

Use custom errors.

Recommendation:

Complete​ Analysis (2nd iteration)

LiquidAccess NFT Smart Contact Audit

16info@blaize.tech

LiquidAccess.sol: _tranferFromCounter variable.

The variable is marked as private, despite the fact that it can be
updated. But the user can access variable value only through the
emitted event or via checking the info in the explorer. Such an
approach may be inconvenient for the frontend or user
experience.

Recommendation:

Verify that the variable should stay private and accessible only
through events OR make it public.

Variable is not visible.

lowest-3 Resolved

LiquidAccess NFT Smart Contact Audit

17info@blaize.tech

Re-entrancy

Arithmetic Over/Under Flows

Access Management Hierarchy

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Delegatecall Unexpected Ether

Hidden Malicious Code

Default Public Visibility

External Contract Referencing

Entropy Illusion (Lack of Randomness)

Unchecked CALL Return Values

Short Address/Parameter Attack

Race Conditions/Front Running

Signatures Replay

Tx.Origin Authentication

Pool Asset Security (backdoors in the
underlying ERC-20)

General Denial Of Service (DOS)

Floating Points and Precision

Uninitialized Storage Pointers

LiquidAccess.sol:

18info@blaize.tech

Code coverage and test results  
for all files

by the blaize.security team (1st iteration)

supports interfaces (60ms)

NFT transfer

user can transfer their NFT (77ms)
NFT cannot be transfered to zero address (55ms)
user cannot transfer their blacklisted NFT (74ms)
user cannot transfer their blacklisted NFT by approve (85ms)
NFT from blacklisted address cannot be sent by approve (65ms)
user cannot transfer their NFT to blacklisted address (46ms)
user cannot transfer their NFT if they are blacklisted (44ms)

Setters

sets contract image (77ms)

setExpirationDate

only the owner can set an expiration date (46ms)
expiration date can be set only for existing token

setSubscriptionType

only the owner can set subscription type (46ms)
subscription type can be set only for existing token

setContractImage

only the owner can set image

LiquidAccess NFT Smart Contact Audit

FILE

LiquidAccess.sol 100

% STMTS

98.53

% BRANCH

100 100

% FUNCS % LINES

test coverage results

19info@blaize.tech

Contract: LiquidAccess

.tokenExists() modifier
Should correct passing (60ms)
Should correct reverting at .tokenURI()
Should correct reverting at .lockupLeftOf()
Should correct reverting at .isNFTBlacklisted()
Should correct reverting at .addNFTToBlacklist()
Should correct reverting at .removeNFTFromBlacklist()

.batchMint() function
Should correct minting (55ms)
Should revert if sender hasnt̀ MINTER_ROLE (59ms)
Should revert if recipients length and uris length not equal
Should not minting for users who is in Blacklist (42ms)

.changeTokenUri() function
Should changing (67ms)
Should revert if sender hasnt̀ MINTER_ROLE (85ms)
Should revert if tokens̀ ID not Exist (68ms)

.updateAllTokensMetadata() function
Should update (56ms)
Should revert if sender hasnt̀ MINTER_ROLE (76ms)
Should do nothing is contract hasnt̀ token

.setContractImage() function
Should revert if sender hasnt̀ MINTER_ROLE (85ms)

.supportsInterface() function
Should correct work if interface code is '0x49064906'

.permit() function
Should revert if approve to owner (41ms)
Should revert if 'v' value incorrect (not equal 27 or 28) (39ms)
Should revert if 'signer' value incorrect (40ms)

21 passing (3s)

LiquidAccess NFT Smart Contact Audit

FILE

LiquidAccess.sol 100

% STMTS

100

% BRANCH

100 100

% FUNCS % LINES

test coverage results

20info@blaize.tech

Code coverage and test results
for all files

by the LiquidAccess NFT

Contract: LiquidAccess

Contract info
should have the correct name (39ms)
should have the correct symbol

Merchant info
should return merchant name
should return merchant id

Token minting
should safeMint (39ms)
shoud return correct tokenId (176ms)
should emit Transfer event (42ms)
should revert if not owner (58ms)

Token info
should have the correct subscription type (49ms)
should be able to change subscription type
should have the correct expiration date
should be able to change expiration date
should revert if token does not exist

Transfer
should emit TransferFrom event with transfer counter (79ms)
should revert if not token owner (60ms)

SafeTransfer
should emit TransferFrom event with transfer counter (86ms)
should revert if not token owner

Approved transfer
should be able to approve an address for a transfer
should be able to transfer by approved address (93ms)

LiquidAccess NFT Smart Contact Audit

Transfer Lockup
should be able to set lockup period
should revert if not owner

21info@blaize.tech

should lock transfers after each transfer (64ms)
should be able to retrieve lockup period of a token (63ms)
should unlock transfers after lockup period (77ms)
should not revert if lockup period is 0 (59ms)

Royalty
should return 5% royalty by default
should be able to change royalty recipient
should be able to change royalty fee
should be able to remove royalty
should revert if caller is not owner

NFT blacklisting
should be able to blacklist NFT (100ms)
should be able to remove NFT from blacklist (110ms)
should revert if caller is not owner
should not be able to transfer blacklisted NFT

Address blacklisting
should be able to blacklist address (189ms)
should be able to remove address from blacklist (113ms)
should revert if caller is not owner
should not be able to transfer NFT to blacklisted address
should not be able to transfer NFT from blacklisted address

User tokens
should be able to retrieve user tokens (114ms)

Metadata
should be able to change NFT meta name (64ms)
should be able to change NFT meta description (65ms)
should be able to change NFT meta image (48ms)
should have correct NFT meta attributes (47ms)
should revert if caller is not owner

Contract metadata
should be able to change contract meta name (45ms)
should be able to change contract meta description (40ms)
should use nft image as contract image
should contain royalty info (40ms)
should revert if caller is not owner

LiquidAccess NFT Smart Contact Audit

22info@blaize.tech

Interface support
should support ERC165
should support ERC721
should support ERC721Metadata
should support ERC721Enumerable
should support ERC2981

LiquidAccess NFT Smart Contact Audit

55 passing (8s)

FILE

LiquidAccess.sol 100

% STMTS

88,24

% BRANCH

97,06 98,65

% FUNCS % LINES

test coverage results

23info@blaize.tech

Contract: LiquidAccess

Token Burn
should be able to burn existing token (63ms)
fails burning non existing token
Allows for the side contract to burn a token (100ms)

Batch minting
should deliver NFTs to recipients (70ms)
should continue enumeration (132ms)
should not allow owner to mint (115ms)
should not mint to blacklisted users (65ms)
no error when minting to non ERC721Receiver contracts
(unfortunately) (52ms)

ERC2612: Permit
should not allow to transfer to marketplace without permission
should check the permission
should check the nonce, not allowing to re-use same signature
(56ms)
should check the deadline
when signature is OK, permission works (48ms)

NFT blacklisting
should be able to blacklist NFT (98ms)
should be able to remove NFT from blacklist (108ms)
should revert if caller is not owner (82ms)
should not be able to transfer blacklisted NFT (43ms)

Address blacklisting
should be able to blacklist address (87ms)
should be able to remove address from blacklist (100ms)
should revert if caller is not owner (78ms)
should not be able to transfer NFT to blacklisted address (46ms)
should not be able to transfer NFT from blacklisted address

Code coverage and test results  
for all files

by the blaize.security team (2nd iteration)

LiquidAccess NFT Smart Contact Audit

FILE

LiquidAccess.sol 96,97

% STMTS

80,49

% BRANCH

96,43

% FUNCS

test coverage results

LiquidAccess NFT Smart Contact Audit

24info@blaize.tech

Disclaimer
The information presented in this report is an intellectual property
of the customer, including all the presented documentation, code
databases, labels, titles, ways of usage, as well as the information
about potential vulnerabilities and methods of their exploitation.
This audit report does not give any warranties on the absolute
security of the code. Blaize.Security is not responsible for how you
use this product and does not constitute any investment advice.

Blaize.Security does not provide any warranty that the working
product will be compatible with any software, system, protocol, or
service and operate without interruption. We do not claim the
investigated product is able to meet your or anyone else’s
requirements and be fully secure, complete, accurate, and free of
any errors and code inconsistency.

We are not responsible for all subsequent changes, deletions, and
relocations of the code within the contracts that are the subjects
of this report.

You should perceive Blaize.Security as a tool that helps to
investigate and detect the weaknesses and vulnerable parts that
may accelerate the technology improvements and faster error
elimination.

