
SMART CONTRACT AUDIT

January 5th 2023 / v.	1.0



Cupcake Smart Contact Audit

1info@blaize.tech

Table of

  Contents
Audit rating 2

Technical summary 3

The graph of vulnerabilities distribution 4

Severity Definition 5

Auditing strategy and Techniques applied/Procedure 6

Executive summary 7

Protocol overview 8

Complete​ Analysis 15

Code coverage and test results for all files by the 
Blaize Security team 

29

Code coverage and test results for all files by the 
Cupcake team 

34

Disclaimer 42



Cupcake Smart Contact Audit

2info@blaize.tech

Cupcake contract’s 
source code was 
taken from the 
repository provided 
by the Cupcake team.

SCORE 9.6/10

audit

  rating

The scope of the project includes the Cupcake set of contracts:

Contract.sol


CandyMachine.sol


CandyMachineFactory.sol


RentableWrapper.sol

Initial commit:

Final commit:

c82dd521149f350f6f006ea3fecd341b29e8424b

df54a75c867ca58519c1836946b7e70c51cda4eb

Initial repository:

https://github.com/leopoldjoy/cupcake-contract#-cupcake

Repository:

https://github.com/cupcake/contract

FInal commit:

9fef304dde4802b241e9d4da565bf5c41bdd8a39

At the end of the audit contracts were merged to the main repository 
and auditors verified their integrity.

https://github.com/cupcake/contract
https://github.com/cupcake/contract


Cupcake Smart Contact Audit

3info@blaize.tech

Technical

  summary

Testable code

During the audit, we inspected the security of the smart contracts of 
the Cupcake protocol. Our task was to find and describe any security 
issues in the smart contracts of the platform. This report presents the 
findings of the security audit of the Cupcake smart contracts 
conducted during November 28th, 2022 - December 19th, 2022.

The testable code has sufficient coverage, 
which corresponds the industry standard of 95%.

The scope of the audit includes the unit test coverage, which is 
based on the smart contracts code, documentation, and 
requirements presented by the Cupcake team. The coverage is 
calculated based on the set of the Hardhat framework tests and 
scripts from additional testing strategies. However, in order to 
ensure full security of the contract, the Blaize.Security team 
suggests the Cupcake team launch a bug bounty program to 
encourage further active analysis of the smart contracts.

INDUSTRY STANDARD

your average

100%75%50%25%0%



Cupcake Smart Contact Audit

4info@blaize.tech

Critical


High


Medium


Low


Lowest

2


1


3


1


9

FOUND

2


1


3


1


9

FIXED/VERIFIED

The table below shows the number of the 
detected issues and their severity. A total of 16 
problems were found. All the issues were 
successfully fixed by the Cupcake team.

The graph of 
vulnerabilities 
distribution:

critical

high

medium

low

LOWest

6%

18.5%

57%

6%

12.5%



Cupcake Smart Contact Audit

5info@blaize.tech

Severity Definition

The system contains several issues ranked as very 
serious
and dangerous for users and the secure 
work of the
system. Requires immediate 
fixes and a further check.

Critical

The system contains a couple of serious issues, which 
lead to unreliable work of the system and migh 
cause
a huge data or financial leak. Requires immediate 
fixes and a further check.

High

The system contains issues that may lead to 
medium financial loss or users’ private information 
leak. Requires
immediate fixes and a further 
check.

Medium

The system contains several risks ranked as relatively 
small with the low impact on the users’ information 
and financial security. Requires fixes.

Low

The system does not contain any issues critical to the 
secure work of the system, but best practices should 
be implemented.

Lowest



Cupcake Smart Contact Audit

6info@blaize.tech

Auditing strategy and 
Techniques applied/Procedure

We checked the contract for the following parameters:



Procedure

Whether the contract is secure;


Whether the contract corresponds to the documentation;


Whether the contract meets the best practices in the efficient use of 
gas, code readability.



We have scanned this smart contract for commonly known and 
more specific vulnerabilities:


Unsafe type inference;


Timestamp Dependence;


Reentrancy;


Implicit visibility level;


Gas Limit and Loops;


Transaction-Ordering 
Dependence;


Unchecked external call - 
Unchecked math;




DoS with Block Gas Limit;


DoS with (unexpected) Throw;


Byte array vulnerabilities;


Malicious libraries;


Style guide violation;


ERC20 API violation;


Uninitialized state/storage/ 
local variables;


Compile version not fixed.



Automated analysis:


Scanning contract by several publicly available automated 
analysis tools such as Mythril, Solhint, Slither, and Smartdec. 
Manual verification of all the issues found with these tools.


Manual audit:


Manual analysis of smart contracts for security vulnerabilities. 
We checked smart contract logic and compared it with the one 
described in the documentation.





Cupcake Smart Contact Audit

7info@blaize.tech

Executive

  summary 
    During the audit, the Blaize Security team has checked the whole 
set of smart contracts provided by the Cupcake team. The 
protocol consists of 4 contracts�

� CandyMachine.sol, an ERC1155 smart-contract with a custom 
minting functionality based on the Chainlink VRF Oracle in order 
to randomly choose URI of the minted token�

� CandyMachineFactory.sol, a factory contract designed for 
deploying new instances of CandyMachine contracts�

� RentableWrapper.sol, an ERC721 smart-contract designed to 
wrap the existing external NFTs to extend their interface with 
EIP-4907 user interface�

� Contract.sol, a contract designed for the distribution of ERC20, 
ERC721, and ERC1155 assets in different modes, which are called 
tags type.


    The goal of the audit was to analyze the listed smart contracts in 
terms of well-known security vulnerabilities, check the contracts 
against the Blaize.Security internal vulnerabilities check-list,  
validate the security of users’ funds, the safety of ERC721 
implementation (including transfer and mint operations), check 
that contracts correspond the best practises in terms of code 
quality and gas optimization. The team of auditors found 2 critical, 
1 high, and 3 medium-severity issues in the contracts, as well as 
several low and informational ones. One of the critical issues was 
connected to the generation of random numbers on-chain. This 
issue was successfully fixed by the Cupcake team by integrating 
the Chainlink VRF Oracle. The other critical issue was connected to 
the possible deletion of information about a wrapped asset in 
RentableWrapper.sol. The issue was fixed as well by deleting only 
necessary information instead of the whole data about the NFT.



Cupcake Smart Contact Audit

7info@blaize.tech

     
     Other issues were connected to the violation of the upgradable 
proxy pattern, the safety of ERC20 asset transfer, gas optimizations, 
and the validation of the business logic of the contracts. A 
complete list of all detected vulnerabilities can be seen in the 
Complete analysis section.

    There are two more aspects worth mentioning. First of all, all the 
contracts, except for CandyMachine, are upgradable, which 
means that the owner of the contracts can change their logic at 
any time. The other thing is connected to the ability of users to use 
arbitrary assets for wrapping and creating tags. Since such an 
issue might be a potential threat for the users of the protocol, 
auditors proposed several approaches to protect the protocol 
against it. According to the Cupcake team, all assets passed to the 
contracts will be checked on the dApp with additional scripts. It is 
also validated inside the smart contracts that the passed assets 
implement the necessary interface.

    The overall security of the smart contracts is high enough. The 
contracts are well-written and have a good natspec 
documentation. Yet, they lack additional documentation, so we 
recommended Cupcake to prepare additional documentation 
describing the logic of the contracts. The Cupcake team has also 
provided a sufficient set of unit tests that validate all the essential 
operations in the smart contracts. Nevertheless, our team has 
prepared our own set of unit tests and additional scenarios.

Security


Gas usage and logic optimization


Code quality



Test coverage


Total


9.8


9.7


9.5


9.5


9.6

RATING



Cupcake Smart Contact Audit

8info@blaze.tech

C u p c a k e  p r o t o c o l

Tag creation

string[] metadataURIs 
-- array with 
metadatas.

Transfer ERC721 token 
from msg.sender to 

address(this).

Transfer ERC1155 token 
from msg.sender to 

address(this).

YESNO Asset is 
ERC1155?

Transfer ERC721 token 
from msg.sender to 

address(this).

Transfer ERC1155 token 
from msg.sender to 

address(this).

YESNO Asset is 
ERC1155?

Baker

addOrRefillTag()

Validate passed tag.

TagPassed passedTag -- 
struct with info, necessary for 
tag creation such as tag type, 

asset address, tokenId, tag 
authority, total supply, id, etc.

bool isNotErc1155 -- 
additional flag which 

indicates if asset if 
ERC1155 or not.

Save info about 
tag in storage.

Check that tag is 
new or drained.

LimitedOrOpenEdi
tion

Save info about 
tag in storage.

Check that tag is 
new or refillable.

SingleUse1Of1 or 
Refillable1Of1



Cupcake Smart Contact Audit

9info@blaze.tech

C u p c a k e  p r o t o c o l

Tag creation

string[] metadataURIs 
-- array with 
metadatas.

Transfer total supply of 
ERC20 token from 

msg.sender to 
address(this).

Transfer total supply of 
ERC1155 token from 

msg.sender to 
address(this).

YESNO Asset is 
ERC1155?

Baker

addOrRefillTag()

Validate passed tag.

TagPassed passedTag -- 
struct with info, necessary for 
tag creation such as tag type, 

asset address, tokenId, tag 
authority, total supply, id, etc.

bool isNotErc1155 -- 
additional flag which 

indicates if asset if 
ERC1155 or not.

Check that fungible 
amount per claim < 
claimable per user.

Check that tag is 
new or drained.

Save info about tag 
in storage.

WalletRestrictedF
ungible

Transfer ERC721 token 
from msg.sender to 

address(this).

Check that tag is 
clean.

HotPotato CandyMachine
Drop

Check that tag is 
new or drained.

LimitedOrOpenEdi
tion

Deploy CandyMachine 
contract.

newCandyMachine()

CandyMachine
Factory.sol

Save info about 
tag in storage.

Check that tag is 
clean.



Cupcake Smart Contact Audit

10info@blaze.tech

C u p c a k e  p r o t o c o l

Claim tag

Mint copy of ERC721 with 
provided token id.

Transfer ERC721 with 
provided token id.

Mint copy of ERC1155 with 
provided token id.

Transfer ERC1155 with 
provided token id.

YES

YES

NO

NO

Asset is 
ERC1155?

Asset is 
ERC1155?

Check if token id does 
not equal existing

LimitedOrOpenEdition

SingleUse1Of1 or 
Refillable1Of1

Tag’s authority

claimTag()

Check that msg.sender 
is tag's authority.

address recipient -- 
recipient of tag's 

tokens.

uint256 uid -- id of 
tag to claim.

bool isNotErc1155 -- additional 
flag which indicates if asset if 

ERC1155 or not.

uint256 newTokenId -- id of 
new token to mint (necessary 
for LimitedOrOpenEdition tag)

Check that tag exists.

Check that tag is not 
already claimed.

Increase claimed 
number and made 

claims for tag.



Cupcake Smart Contact Audit

11info@blaze.tech

C u p c a k e  p r o t o c o l

Claim tag

Transfer ERC20 tokens. Transfer ERC1155 tokens.

YESNO Asset is 
ERC1155?

WalletRestricted
Fungible

HotPotato

Set user of tag's NFT.

mint()

Tag’s authority

claimTag()

Check that msg.sender 
is tag's authority.

address recipient -- 
recipient of tag's 

tokens.

uint256 uid -- id of 
tag to claim.

bool isNotErc1155 -- additional 
flag which indicates if asset if 

ERC1155 or not.

uint256 newTokenId -- id of 
new token to mint (necessary 
for LimitedOrOpenEdition tag)

Check that tag exists.

Check that tag is not 
already claimed.

Increase claimed 
number and made 

claims for tag.

CandyMachine.sol

CandyMachineDrop



Cupcake Smart Contact Audit

12info@blaze.tech

C u p c a k e  p r o t o c o l

Cancel tag

Transfer ERC721 token 
back to owner.

Transfer ERC721 token 
back to owner.

Transfer ERC1155 tokens 
back to owner.

Transfer ERC1155 tokens 
back to owner.

YES

YES

NO

NO

Asset is 
ERC1155?

Asset is 
ERC1155?

LimitedOrOpenEdition

SingleUse1Of1 or 
Refillable1Of1

Baker

cancelAndEmpty()

bool isNotErc1155 -- 
additional flag which 

indicates if asset if 
ERC1155 or not.

uint256 uid -- id of tag 
to cancel.

Check that tag exists 
and is valid for 

canceling.

Delete tag.



Cupcake Smart Contact Audit

13info@blaze.tech

C u p c a k e  p r o t o c o l

Cancel tag

Transfer leftover ERC20 
tokens back to owner.

Transfer leftover ERC1155 
tokens back to owner.

YESNO Asset is 
ERC1155?

WalletRestricted
Fungible

HotPotato

Check that msg.sender 
is user of NFT.

Transfer ERC721 token 
back to user.

cancel()

Baker

cancelAndEmpty()
uint256 uid -- id of tag 

to cancel.

Check that tag exists 
and is valid for 

canceling.

CandyMachine.sol

CandyMachineDrop

Delete tag.

bool isNotErc1155 -- 
additional flag which 

indicates if asset if 
ERC1155 or not.



Cupcake Smart Contact Audit

14info@blaze.tech

C u p c a k e  p r o t o c o l

RentableWrapper.sol

Wrap any ERC721 
token.

Allow usership of 
wrapped assets.

Unwrap 
RentableWrapped asset.

User

Receive original 
ERC721 token.

Receive wrapped 
RentableWrapper asset.



Cupcake Smart Contact Audit

15info@blaize.tech

Complete​ Analysis 

CandyMachine.sol: _randomNumber().

In order to determine the ID of the minted token, a pseudo-random 
number is generated based on block.timestamp and a nonce. 
Miners can manipulate the transaction and some of the blocks to 
manipulate the outcomes of the ID to mint.

The issue is described in the following article: https://
betterprogramming.pub/how-to-generate-truly-random-numbers-
in-solidity-and-blockchain-9ced6472dbdf






Miners can manipulate the result of a random number.

Consider using off-chain oracles for generating random numbers.



Post-audit:

VRF Chainlink Oracle is now used for generating random numbers.

Recommendation:

Critical-1 Resolved

https://betterprogramming.pub/how-to-generate-truly-random-numbers-in-solidity-and-blockchain-9ced6472dbdf
https://betterprogramming.pub/how-to-generate-truly-random-numbers-in-solidity-and-blockchain-9ced6472dbdf
https://betterprogramming.pub/how-to-generate-truly-random-numbers-in-solidity-and-blockchain-9ced6472dbdf


Cupcake Smart Contact Audit

16info@blaize.tech

RentableWrapper.sol: _beforeTokenTransfer().


During the transfer, the _beforeTokenTransfer hook is executed. This 
hook validates that in case the specified t̀okenId ̀ has a user and 
the expiry is less than block.timestamp, the whole information 
about the token is removed from the mapping (line 218). Due to this, 
the token can no longer be unwrapped after this information is 
deleted. Based on the validations performed in this hook, only the 
information connected to the user and expiry should be deleted.

Information about the token can be deleted during transferring.

Delete only the information about the user and expiry.



Post-audit:

Only the information about the user and expiration is deleted now 
if needed.

Recommendation:

Critical-2 Resolved



Cupcake Smart Contact Audit

17info@blaize.tech

CandyMachineFactory.sol: newCandyMachine().


CandyMachine.sol inherits an initializable contract 
(ERC1155URIStorageUpgradeable.sol), which is most often used 
when a contract is supposed to be an implementation for an 
upgradable proxy. However, when the instance of 
CandyMachine.sol is deployed within the factory contract, no 
proxy is deployed and an implementation is initialized and used in 
the future. The issue is marked as high since it is unclear if 
CandyMachine.sol should be deployed as a proxy. Based on the 
code of CandyMachine.sol, it is supposed to be an upgradable 
proxy but it is not deployed as a proxy in the factory.

Upgradable pattern violation.

Verify if CandyMachine.sol should be an upgradable proxy 
contract or implement it as non-upgrable contract with the 
constructor instead of initialized().

Post-audit: The contract was implemented as non-upgradable.

Recommendation:

High-1

RentableWrapper.sol: isWrapped(), line 145.


Based on the naming and the usage of the function isWrapped(), it 
should return true when the provided ẁrappedTokenId ̀is wrapped 
and false otherwise. However, the current statement, which checks 
if the asset of a provided token is zero address, returns true when 
ẁrappedTokenId ̀ isn’t wrapped and false otherwise. The issue is 
marked as medium since the function doesn’t prevent any vital 
actions on the contracts, though it prevents the correct execution 
of the uri() function, which might be important for the dApp.

Wrong statement is checked in the function.

Correct the statement.

Recommendation:

Medium-1

Resolved

Resolved



Cupcake Smart Contact Audit

18info@blaize.tech

Contract.sol: addOrRefillTag(), line 201, 218; claimTag(), line 333; 
cancelAndEmpty(), line 394.


Transferring a zero amount of ERC1155 tokens is redundant since it 
doesn’t affect the balances. Thus, in case no tokens should be 
transferred, the transfer can be removed. In case tokens should be 
transferred, the amount greater than 0 should be passed. The issue 
is marked as medium since in claimTag(), the recipient receives a 
zero amount of ERC1155 tokens, which might be potentially 
misleading for users who may expect to actually receive tokens.

Transferring zero amount of ERC1155 tokens.

Verify if the current logic is correct. Remove the transfer or pass an 
amount greater than 0.



Post-audit:

An appropriate amount of tokens is transferred now.

Recommendation:

Medium-2

Contract.sol: addOrRefillTag(), line 225; claimTag(), line 365; 
cancelAndEmpty(), line 437.

Though a return value is validated with r̀equire,̀ such an approach 
to validate the transfer or ERC20 token might revert in case the 
implementation of the token has a non-standard transfer, which 
doesn’t return boolean values (e.g. USDT). The issue is marked as 
medium since the tag can be created by anyone and in case a 
token with a non-standard implementation is used, the function 
will revert.

SafeERC20 should be used.

Use SafeERC20 to validate transfers.

Recommendation:

Medium-3

Resolved

Resolved



Cupcake Smart Contact Audit

19info@blaize.tech

CandyMachineStorage.sol: lines 17-19, variables ǹumURIsExisting,̀ 
ǹonce,̀ òwner̀.
ContractStorage.sol: lines 60, 118, variable 
c̀andyMachineFactoryAddr̀.
The visibility of these storage variables is 
not explicitly marked. Though all variables have private visibility by 
default, it is recommended to explicitly mark the visibility in order to 
improve code readability.


Missing storage variables visibility.

lowest-1

Mark the visibility of the storage variables.

Recommendation:

Contract.sol: addOrRefillTag().


Function for claiming tag contains a restriction, that msg.sender is 
equal to the tag’s authority. However, the claimTag() function also 
has the onlyOwner modifier that restricts the function from being 
called by anyone except for the owner. Thus, in case 
passedTag.tagAuthority ̀ is not equal to the owner during the 
execution of the addOrRefillTag() function, the tag cannot be 
claimed until the ownership of the contract is transferred to the tag 
authority. The issue is marked as low since only the owner can 
execute addOrRefillTag() and should validate input parameters 
such as p̀assedTag.tagAuthority.̀



Recommendation. 

Validate that p̀assedTag.tagAuthority ̀is equal to the owner OR 
validate that claimTag() should only be executed by the owner 
whose address is equal to tag authority.



Post-audit:

During claiming the tag, a bakery address is passed to generate 
the correct hash of the tag. Only tag authority can claim the tag.

The authority tag is not validated to be owner.

LOW-1 Resolved

Resolved



Cupcake Smart Contact Audit

20info@blaize.tech

     1) CandyMachine.sol: initialize(), line 43.


Assigning zero during the initialization is redundant since all variables 
in Solidity are initialized with zero values by default.


     2) CandyMachine.sol: mint(), line 90.


Setting the ǹumURIsExisting ̀ storage variable to zero before revert() is 
redundant since transactions will always revert when a branch on 
lines 90-91 is entered. Such an operation decreases code readability 
(In case the statement in ìf ̀is true and ǹumURIsExisting ̀must be set to 
zero, a revert should not be performed). Thus, it is recommended to 
remove assigning ǹumURIsExisting ̀to zero and use r̀equire ̀instead of 
ìf.̀


     3) Contract.sol: claimTag(); cancelAndEmpty(), lines 372-376.


The storage pointer of tags[tagHash] should be used in order to 
decrease gas spendings and increase code readability.


     4) Contract.sol: addOrRefillTag(), line 259; claimTag(), line347;

          cancelAndEmpty(), 419.


Gas optimization suggestions.

lowest-2

The interfaces of CandyMachine and CandyMachineFactory should 
be imported and used instead of the contract to decrease the code 
size of Contract.sol and decrease gas expenditure during the 
deployment of the contract.

     5) Contract.sol: cancelAndEmpty(), line 455.


The statement “require(totalSupply - numClaimed > 0, "tag totally 
depleted")” in branching for tag “WalletRestrictedFungible” can’t be 
FALSE as there is already a validation that checks for totalSupply to be 
greater than numClaimed before all branching (line 421).


Resolved



Cupcake Smart Contact Audit

21info@blaize.tech

CandyMachineStorage.sol, CandyMachine.sol, 
RentableWrapperStorage.sol, RentableWrapper.sol, 
ContractStorage.sol, Contract.sol.


The usage of SafeMathUpgradeable library is declared in all the 
following contracts, though none of the library’s functions is used 
within any of them.




Recommendation. 

Remove an unnecessary library.



Library functions are never used.

lowest-3

Contract.sol: addOrRefillTag(), lines 226, 236;


When the tag type is ẀalletRestrictedFungible,̀ the ID of tokens is 
always used as 0. Thus, tags with any other ids of tokens can’t be used. 
The issue is marked as the lowest since it doesn’t affect the security of 
the contract, though such logic should be validated.



Recommendation. 

Validate that only tokens with 0 should be used when tag type is 
ẀalletRestrictedFungible ̀or use a passed ID p̀assedTag.erc721TokenId.̀



Post-audit:

Passed èrc721TokenId ̀is used as an ID now.



ERC1155 with zero ID are used only.

lowest-4

Resolved

Resolved



Cupcake Smart Contact Audit

22info@blaize.tech

Contract.sol


When a tag with the L̀imitedOrOpenEdition ̀ tag type is created, ERC721 
token is transferred to the contract’s balance. In case the whole 
supply within this tag is claimed, the original ERC721 token that was 
transferred during tag creation can’t be transferred from the 
contract’s balance. The issue is marked as lowest since it looks like an 
intended logic, though it still should be validated.



Recommendation. 

Validate that ERC721 token from a tag with the L̀imitedOrOpenEdition ̀ 
type shouldn’t be rescued from the contract’s balance.



Post-audit: NFT with the L̀imitedOrOpenEdition ̀ tag can be withdrawn.



NFTs can’t be rescued from the contract’s balance.

lowest-5

Contract.sol 

An arbitrary address of the asset is used across the functions of 
Contract.sol. Only the owner can execute the functions where the 
asset is passed and should validate its correctness and conformity to 
the necessary interface. For example, the safety of assets with the 
IERC721CopyableUpgradeable interface should be validated before 
creating a tag with such assets. The issue is marked as lowest since 
only the owner can pass the address of asset and verify its safety and 
conformity to the necessary interface.

From the client: According to the Cupcake team, the validation of 
assets will be performed in additional scripts on the dApp. Also, as a 
minimal measure, it is now validated that the provided asset supports 
the necessary interface.

Post-audit: The function for creating a tag can now be executed by 
any user, though the validation of the asset on the dApp should be 
enough to protect the platform.





Usage of an arbitrary asset.

lowest-6 Verified

Resolved



Cupcake Smart Contact Audit

23info@blaize.tech

Contract.sol, claimTag()


When claiming the CandyMachineDrop tag, the claimTag method fails 
proportionately as tagsClaimed approaches totalSupply. It happens 
because a random generator cannot generate a valid randomNum 
when more mintedTokenIds[randomNum] equals TRUE. The “i” iterator 
becomes greater than numURIsExisting and the statement “while 
(mintedTokenIds[randomNum] && i < numURIsExisting)” becoms FALSE, 
quitting the loop and resulting in revert “candyMachine depleted” in 
line 92.


When claiming the last NFT from the total supply, there is about 40% 
possibility that the method will fail (according to the automatic test).



Recommendation. 

Consider changing to a different approach where a valid URI ID is 
always determined in one function call.



Claiming tag may fail.

lowest-7

lowest-8

Contract.sol: addOrRefillTag().


When adding the WalletRestrictedFungible tag with perClaim not 
being a divisor of totalSupply, some amount of tokens is going to 
be blocked in the Contract. For example, if we add the tag with 
totalSupply=10 and perClaim=6, we cannot claim the tag the 
second time because there are not enough tokens left in 
totalSupply (4 tokens) to match the claim (6 tokens). Therefore, 4 
tokens are blocked in the Contract with no chance to be claimed.

Tokens might be blocked in the contract.

Add a validation for perClaim to be a divisor of totalSupply.

Post-audit: The Cupcake team provided a detailed explanation on 
the issue. According to the team, though funds can’t be claimed, 
they can still be rescued with the cancelAndEmpty() function. It was 
confirmed by the auditors as well.

Recommendation:

Verified

Resolved



Cupcake Smart Contact Audit

24info@blaize.tech

RentableWrapper.sol: wrap(), unwrap(). When the wrap() and unwrap() 
functions are executed, the user can specify the address of an ERC721 
asset, including malicious implementations. Though there are 
validations of the ownership in lines 79, 94, 114, 129, a malicious 
implementation of ERC721 can still pass them. The issue is marked as 
high since usage of malicious assets can mislead other users of the 
protocol.



Recommendation. 

Implement a sanitizing policy. Either use a whitelist on smart contracts, 
or validate the provided assets in off-chain scripts, or notify users of 
any unverified wrapped assets.



From the client: 

According to the Cupcake team, a validation of the assets will be 
performed in additional scripts on the dApp.



Post-audit:

Issue was marked as lowest after the clarifications from the client’s 
side, since it was verified that it has no impact on contract itself.



Usage of an arbitrary ERC721 token.

lowest-9 Verified



Cupcake Smart Contact Audit

25info@blaize.tech

Re-entrancy

Arithmetic Over/Under Flows

Access Management Hierarchy

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Delegatecall Unexpected Ether 

Hidden Malicious Code

Default Public Visibility

External Contract Referencing

Entropy Illusion (Lack of Randomness)

Unchecked CALL Return Values

Short Address/Parameter Attack

Race Conditions/Front Running

Signatures Replay

Tx.Origin Authentication

Pool Asset Security (backdoors in the 
underlying ERC-20)

General Denial Of Service (DOS)

Floating Points and Precision

Uninitialized Storage Pointers

Contract.sol



Cupcake Smart Contact Audit

26info@blaize.tech

Re-entrancy

Arithmetic Over/Under Flows

Access Management Hierarchy

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Delegatecall Unexpected Ether 

Hidden Malicious Code

Default Public Visibility

External Contract Referencing

Entropy Illusion (Lack of Randomness)

Unchecked CALL Return Values

Short Address/Parameter Attack

Race Conditions/Front Running

Signatures Replay

Tx.Origin Authentication

Pool Asset Security (backdoors in the 
underlying ERC-20)

General Denial Of Service (DOS)

Floating Points and Precision

Uninitialized Storage Pointers

CandyMachine.sol



Cupcake Smart Contact Audit

27info@blaize.tech

Re-entrancy

Arithmetic Over/Under Flows

Access Management Hierarchy

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Delegatecall Unexpected Ether 

Hidden Malicious Code

Default Public Visibility

External Contract Referencing

Entropy Illusion (Lack of Randomness)

Unchecked CALL Return Values

Short Address/Parameter Attack

Race Conditions/Front Running

Signatures Replay

Tx.Origin Authentication

Pool Asset Security (backdoors in the 
underlying ERC-20)

General Denial Of Service (DOS)

Floating Points and Precision

Uninitialized Storage Pointers

CandyMachineFactory.sol



Cupcake Smart Contact Audit

28info@blaize.tech

Re-entrancy

Arithmetic Over/Under Flows

Access Management Hierarchy

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Delegatecall Unexpected Ether 

Hidden Malicious Code

Default Public Visibility

External Contract Referencing

Entropy Illusion (Lack of Randomness)

Unchecked CALL Return Values

Short Address/Parameter Attack

Race Conditions/Front Running

Signatures Replay

Tx.Origin Authentication

Pool Asset Security (backdoors in the 
underlying ERC-20)

General Denial Of Service (DOS)

Floating Points and Precision

Uninitialized Storage Pointers

RentableWrapper.sol



29info@blaize.tech

Code coverage and test results  
for all files

by the blaize.security team 

CandyMachine

# Initialize
Should work if metadata and owner passed correctly (47ms)
Should revert if passed empty array for URIs
Should revert is passed zero address as owner
Should revert if called twice

# Minting
Should work if not cancelled and not finished
Should revert if finished (48ms)
Should revert if cancelled
Should revert if called by not owner

# Cancel
Should work if called by owner
Should work if called by owner and token already minted (38ms)
Should revert if called by not owner

CandyMachineFactory

# Initialize
Should revert if called twice

# NewCandyMachine
Should work if metadata passed correctly (45ms)
Should revert if passed empty array for URIs

Contract

# Initialize
Should revert when passing zero-address as candy factory
Should revert when called twice

# LimitedOrOpenEdition
add tag (721) (38ms)
add tag (1155)
claim tag (721) (51ms)
should revert when hacker tries to claim tag (721) (41ms)
claim tag (1155) (48ms)
refill tag (721) (87ms)
refill tag (1155) (71ms)

Cupcake Smart Contact Audit



30info@blaize.tech

revert when claiming tag with newTokenId already minted (57ms)
cancel and empty (721) (53ms)
cancel and empty (1155) (49ms)

# WalletRestrictedFungible
add tag (20)
add tag (1155)
revert when adding tag which is undrained (45ms)
revert when adding tag with fungiblePerClaim > perUser
claim tag (20) (41ms)
should revert when claiming more than total supply (40ms)
claim tag (1155) (45ms)
should revert when claiming tag which is totally deleted (38ms)
refill tag (20) (53ms)
refill tag (1155) (64ms)
cancel and empty (20) (45ms)
cancel and empty (1155) (46ms)
should revert when cancelling tag which is totally deleted (20) (44ms)

revert when adding existing tag (43ms)

revert when adding tag which is fully undrained (48ms)

claim tag (80ms)

revert when adding tag which is partly drained (44ms)

revert when claiming tag when per user was drained (73ms)

revert when adding tag with zero total supply

cancel tag after claiming multiple tags (67ms)

revert when adding tag with zero perUser

cancel tag after claiming multiple tags (87ms)

revert when adding tag with perUser > totalSupply

claim all tags from total supply (124ms)

revert when cancelling already canceled tag (66ms)

should revert when cancelling tag which is totally deleted (1155) (42ms)
# CandyMachineDrop

add tag

# Checking wrong conditions
revert when adding existing tag

Cupcake Smart Contact Audit



31info@blaize.tech

# Additional tests
add tag of Type1 with uid=1 -> drain tag -> add tag of Type2 with uid=1 (40ms)
add tag of Type1 with uid=1 -> add tag of Type2 with uid=1

   erc1155 token with id from passedTag should be transferred to      
Contract when adding tag

 minting tag where neither Contract nor tagAuthority not a owners of nft
claim all tags from total supply (CandyMachineDrop)

# SingleUse1Of1
Should work with ERC721 if passed correct data (46ms)
Should work with ERC1155 if passed correct data
Shouldn't be able to create twice (45ms)
Should revert if ERC721 token not approved
Should revert if ERC1155 token not approved
Should be able to cancelAndEmpty with ERC721 (45ms)
Should be able to cancelAndEmpty with ERC1155
Should revert if cancelling claimed tag (47ms)

# Refillable1Of1
Should work with ERC721 if passed correct data (51ms)
Should work with ERC1155 if passed correct data
Should be able to create twice (105ms)
Should refill without draining
Should be able to cancelAndEmpty with ERC721 (48ms)
Should be able to cancelAndEmpty with ERC1155
Should revert if cancelling claimed tag (50ms)

# HotPotato
Should work with ERC4907 if passed correct data (70ms)
Shouldn't be able to create twice (41ms)
Shouldn't be able to create if not approved
Should be able to cancelAndEmpty if claimed by the Alice (53ms)
Shouldn't be able to cancelAndEmpty if claimed (59ms)

RentableWrapper

# Initialize
Should name set and symbol
Should revert if called twice

Cupcake Smart Contact Audit



32info@blaize.tech

# Wrap
Should work if Alice owns nft, nft approved and nft address passed 
correctly (57ms)
Should revert if Alice does not own nft
Should revert if nft is not approved
Should revert if nft address is not correct
Should revert if nft is already wrapped (38ms)
Should revert if nft doesn't exist

# Unwrap
Should work if Alice owns wrapped token and wNFT user is not assigned 
(70ms)
Should work if Alice owns wrapped token and wNFT user is set to 
Alice (71ms)
Should revert if Alice does not own wrapped token (48ms)
Should revert if wNFT user is set to Bob (51ms)
Should revert if wNFT does not exist

# SetUser
Alice should be able to set herself while she owns wrapped token 
and expires value is in
the future (60ms)
userOf should return owner of NFT before time expires (63ms)
userOf should return zero address of NFT before time expires (65ms)
Alice should be able to set Bob while she owns wrapped token and 
expires value is in the
future (55ms)
Charlie should be able to set Bob if he is approved for wrapped token 
and expires value
is in the future (57ms)
Should revert if expires value is in the past (55ms)
Should revert if Alice does not own wrapped token (63ms)
Should revert if Charlie is not approved for wrapped token (55ms)

# Transfer wrapped token
User and expires values should be reset after transfer if user expired, 
but asset and
underlyingTokenId should remain
Transfer shouldn't reset user and expires values if user is not expired (55ms)
Transfer shouldn't reset user and expires values if from=to (54ms)
Transfer shouldn't reset user and expires values if user is not set (53ms)

Cupcake Smart Contact Audit



33info@blaize.tech

# Getters
isWrapped should return true if token is wrapped

isWrapped should return false if token is not wrapped

tokenURI should return tokenURI if token is wrapped
tokenURI should revert if token is not wrapped

userExpires should return 0 if user is not set (104ms)
userExpires should return user expires if user is set (50ms)
Supports interface ERC4907
Supports interface IERC721MetadataUpgradeable

Cupcake Smart Contact Audit

110 passing (10s)



FILE

CandyMachine.sol

Contract.sol

CandyMachineFactory.sol

RentableWrapper.sol

All files

100

100 50 75

97.39 89.29 87.5

100 83.33 91.67

99.34 78.57 88.54

% STMTS

91.67

% BRANCH

100

% FUNCS

test coverage results



34info@blaize.tech

Code coverage and test results  
for all files

by the cupcake team 

RentableWrapper

# Initialize
should should not revert when name and symbol are empty (212ms)
should set owner (76ms)
should set name (66ms)
should set symbol (64ms)

wrap
should revert when token is not owned by wrap executer
should revert when token is not approved for use
should wrap token and issue wrapped token and emit a Wrap event (4056ms)
should revert when attempting to (recursively) wrap a wrapper token (3899ms)

unwrap
should revert when wrapper token is not owned by unwrap executer
should revert when owner of wrapper token is not the current user (3373ms)
should unwrap token and take wrapped token back and emit an Unwrap 
event
(155ms)
should (not revert and) unwrap token and take wrapped token back and 
emit an
Unwrap event when non-owner usership has expired (3859ms)

transferFrom
should revert when owner of wrapper token is not the current user (2400ms)
should allow transfer when there is no user of the token
should allow transfer when owner of wrapper token is also the current 
user
(383ms)

isWrapped
should return false when no such wrapped token exists for the 
provided tokenId
should return true when a wrapped token exists for the provided tokenId
should return false when a wrapped token has been unwrapped for 
the provided
tokenId (38ms)

tokenURI
should return tokenURI when wrapped token has tokenURI set
should return empty tokenURI when wrapped token has no tokenURI set

Cupcake Smart Contact Audit



35info@blaize.tech

setUser
should revert when expires is not in the future
should revert when not called by the owner (3111ms)
should set user correctly (257ms)
should emit an UpdateUser event when user is set correctly (963ms)
should set user correctly when called by other address that is approved by 
owner
(2112ms)

userOf
should return null address when no user is set
should return address when user is set (2378ms)
should return null address when user has expired (2723ms)

userExpires
should revert when owner of wrapper token is not the current user (395ms)

CandyMachine

constructor
should revert when metadataURIs array is empty
should revert when ownerArg is the null address
should populate URIs when passed (57ms)

mint
should set unique metadata URIs for all assets that are minted (2958ms)
should revert after all assets have already been minted (3937ms)
should emit a TransferSingle event when an asset is minted (3918ms)
should revert when a non-owner address calls

cancel
should override all metadata URIs before any assets have been minted
should override two metadata URIs when only one asset has been 
minted
(3845ms)
should override one metadata URIs when two assets have been minted 
(3967ms)
should override zero metadata URIs when all three assets have been 
minted
(3970ms)
should emit a Cancellation event when the cancellation occurs (3957ms)
should revert when a non-owner address calls

CandyMachineFactory

initialize
should set owner (76ms)

Cupcake Smart Contact Audit



36info@blaize.tech

newCandyMachine
should create a new CandyMachine contract that is functional (7727ms)
should revert when trying to create a CandyMachine contract 
with an empty array
of metadata URIs
should emit a Creation event when new newCandyMachine is created

Contract

initialize
should revert when the null address is provided for the 
CandyMachineFactory
address argument (41ms)
should set the owner (41ms)

addOrRefillTag


LimitedOrOpenEdition

should revert when totalSupply is set to zero
should revert when perUser is set to zero
should revert when perUser is greater than totalSupply
should revert when tag is already in use and undrained

ERC-721
should revert and not create ERC-721 tag when


non-IERC721CopyableUpgradeable-compliant asset is passed
should create ERC-721 tag
should create ERC-721 tag, ignoring passed value for fungiblePerClaim 
(always
set to 0)
should create ERC-721 tag even when tag existed before but is now 
drained
(72ms)

ERC-1155
should revert and not create ERC-1155 tag when


non-IERC1155CopyableUpgradeable-compliant asset is passed
should create ERC-1155 tag
should create ERC-1155 tag, ignoring passed value for fungiblePerClaim 
(always
set to 0)
should create ERC-1155 tag even when tag existed before but is now 
drained
(74ms)

SingleUse1Of1
should revert when tag has been used / uncleared

ERC-721
should revert and not create ERC-721 tag when non-IERC721-compliant asset 
is
passed

Cupcake Smart Contact Audit



37info@blaize.tech

should revert if tag ever existed (50ms)
should create ERC-721 tag
should create ERC-721 tag, ignoring passed values for totalSupply, perUser, 
and
fungiblePerClaim

ERC-1155
should revert and not create ERC-1155 tag when non-IERC1155-compliant 
asset
is passed
should revert if tag ever existed (48ms)
should create ERC-1155 tag
should create ERC-1155 tag, ignoring passed value for totalSupply, perUser, and


fungiblePerClaim

Refillable1Of1
should revert when tag has been used / uncleared

ERC-721
should revert and not create ERC-721 tag when non-IERC721-compliant 
asset is
passed
should create ERC-721 tag
should create ERC-721 tag, ignoring passed values for totalSupply, 
perUser, and
fungiblePerClaim
should create / refill tag if it existed before but has already been 
claimed (71ms)

ERC-1155
should revert and not create ERC-1155 tag when non-IERC1155-compliant 
asset
is passed
should create ERC-1155 tag
should create ERC-1155 tag, ignoring passed value for totalSupply, 
perUser, and
fungiblePerClaim
should create / refill tag if it existed before but has already been claimed 
(73ms)

WalletRestrictedFungible
should revert when tag is already in use and unused (not even partially 
drained)
should revert when tag is already in use and partially drained (39ms)

should revert when fungiblePerClaim is greater than perUser

should revert when totalSupply is set to zero

should revert when fungiblePerClaim is set to zero

Cupcake Smart Contact Audit



38info@blaize.tech

ERC-20
should revert and not create ERC-20 tag when non-IERC20-compliant 
asset is
passed
should create ERC-20 tag
should create / refill tag if it existed before but has already been totally 
claimed
(67ms)

ERC-1155
should revert and not create ERC-1155 tag when non-IERC1155-compliant 
asset
is passed
should create ERC-1155 tag
should create / refill tag if it existed before but has already been totally 
claimed
(82ms)

HotPotato
should revert when tag is currently in use
should revert and not create tag when non-IERC4907-compliant asset is 
passed
should revert when tag already existed and has even been claimed (52ms)
should create tag
should create tag, ignoring passed values for totalSupply, perUser, 
and
fungiblePerClaim

CandyMachineDrop
should revert when perUser is set to zero
should revert when perUser is greater than the number of metadataURIs 
provided
should revert when tag is currently in use
should revert when tag already existed and has even been claimed 
(5867ms)
should create tag (3540ms)
should create tag, ignoring passed values for assetAddress, 
erc721TokenId,
totalSupply, and fungiblePerClaim (3615ms)

claimTag


LimitedOrOpenEdition

should revert when totalSupply is zero
should revert when non-tagAuthority signer sends transaction
should revert when the numClaimed equals totalSupply (51ms)
should revert when the claimsMade for a specified recipient equals perUser

should revert when newTokenId equals existing tokenId

Cupcake Smart Contact Audit



39info@blaize.tech

ERC-721
should claim tag

ERC-1155
should claim tag

SingleUse1Of1
should revert when totalSupply is zero
should revert when non-tagAuthority signer sends transaction
should revert when the numClaimed equals totalSupply / when the 
claimsMade for
a specified recipient equals perUser

ERC-721
should claim tag

ERC-1155
should claim tag

Refillable1Of1
should revert when non-tagAuthority signer sends transaction

ERC-721
should revert if tag has been claimed and not refilled yet (38ms)
should claim tag
should create refill tag after a claim (60ms)

ERC-1155
should revert if tag has been claimed and not refilled yet
should claim tag
should create refill tag after a claim (70ms)

WalletRestrictedFungible
should revert when totalSupply is zero
should revert when non-tagAuthority signer sends transaction
should revert when the numClaimed equals totalSupply (66ms)
should revert when the claimsMade for a specified recipient equals perUser


(47ms)ERC-20
should claim tag

ERC-1155
should claim tag

HotPotato
should revert when non-tagAuthority signer sends transaction
should claim tag

CandyMachineDrop
should revert when non-tagAuthority signer sends transaction

Cupcake Smart Contact Audit



40info@blaize.tech

should revert if tag has been depleted (12012ms)
should claim tag (4017ms)

cancelAndEmpty


LimitedOrOpenEdition

should revert when totalSupply is zero
should reset claimsMade for the tag

ERC-721
should cancel and empty tag

ERC-1155
should cancel and empty tag

SingleUse1Of1
should revert when totalSupply is zero
should revert when the numClaimed equals totalSupply

ERC-721
should cancel and empty tag

ERC-1155
should cancel and empty tag

Refillable1Of1
should revert when totalSupply is zero
should revert when the numClaimed equals totalSupply
should reset claimsMade for the tag (52ms)

ERC-721
should cancel and empty tag

ERC-1155
should cancel and empty tag

WalletRestrictedFungible
should revert when totalSupply is zero
should revert when the numClaimed equals totalSupply (43ms)
should reset claimsMade for the tag

ERC-20
should cancel and empty tag

ERC-1155
should cancel and empty tag

HotPotato
should revert when totalSupply is zero
should reset claimsMade for the tag
should revert when bakery is not current user

Cupcake Smart Contact Audit



41info@blaize.tech

should cancel and empty tag
CandyMachineDrop

should revert when totalSupply is zero
should revert when the numClaimed equals totalSupply (8009ms)
should reset claimsMade for the tag (4032ms)
should cancel and empty tag

getClaimsMade
should return claimsMade properly based on invalidation mechanism (60ms)

157 passing (3m)

Cupcake Smart Contact Audit

FILE

CandyMachine.sol

Contract.sol

CandyMachineFactory.sol

RentableWrapper.sol

All files

100

100 25 75

100 93.45 87.5

94.59 69.44 83.33

98.64 54.44 88.95

% STMTS

91.67

% BRANCH

100

% FUNCS

test coverage results



Cupcake Smart Contact Audit

42info@blaize.tech

Disclaimer
The information presented in this report is an intellectual property 
of the customer, including all the presented documentation, code 
databases, labels, titles, ways of usage, as well as the information 
about potential vulnerabilities and methods of their exploitation. 
This audit report does not give any warranties on the absolute 
security of the code. Blaize.Security is not responsible for how you 
use this product and does not constitute any investment advice. 





Blaize.Security does not provide any warranty that the working 
product will be compatible with any software, system, protocol, or 
service and operate without interruption. We do not claim the 
investigated product is able to meet your or anyone else’s 
requirements and be fully secure, complete, accurate, and free of 
any errors and code inconsistency.  





We are not responsible for all subsequent changes, deletions, and 
relocations of the code within the contracts that are the subjects 
of this report.




You should perceive Blaize.Security as a tool that helps investigate 
and detect any weaknesses and vulnerable parts that may 
accelerate the technology improvements and faster error 
elimination.


