Blaize.Security

&® BLUELIGHT

SMART CONTRACT AUDIT

- Q

Blaize.Security

Kale Bridge Smart Contoct Audit

TABLE OF
CONTENTS

Audit rating

Technical summary

The graph of vulnerabilities distribution

Severity Definition

Auditing strategy and Technigques applied/Procedure
Executive summary

Protocol overview

Complete Analysis

Code coverage and test results for all files by the
Blaize Security team

Code coverage and test results for all files by the
Bluelight team

Disclaimer

10

31

40

47

info@bloizetech

Blaize.Security

Kale Bridge Smart Contoct Audit

AUDIT
RATING

SCORE

Kale Bridge contracts’
source code was
taken from the
repository provided by
the Bluelight team.

9.8Bn1o

The scope of the project includes the Kale Bridge s=t of contracts:

kale-bridge-v2\contracts\
BridgeBase.sol
BridgeBsc.sol
BridgeEmergencyStop.sol
BridgeEth.sol
BridgeSigTransfer.sol
BridgeTransfer.sol
BridgeUserRegistry.sol
Signer.sol
BridgeRefundRequest.sol
BridgeRoles.sol

user-token-registry\contracts\core\

BlockTokens.sol
BlockUsers.sol
RegistryRoles.sol
RegistryStorage.sol

info@blaizetech

BlGiZ'E.SE'CUTitY Kale Bridge Smart Contact Audit

user-tokenregistry\contracts\extensions\
ERC20UserRegistry.sol
ERC721UserRegistry.sol
ERCT155UserRegistry.sol

UserLock.sol

user-token-registry\contracts\extensions-upgradeable\

ERC20UserRegistryUpgradeable.sol
ERC721UserRegistryUpgradeable.sol
ERCT155UserRegistryUpgradeable.sol
UserLockUpgradeable.sol

user-token-registry\contracts\libraries\VerboseReverts.sol
user-token-registry\contracts\Registry.sol
kale-bnb\contracts\BNBKale.sol

Repository:
https://github.com/viewpoint-labs/smart-contracts/tree/kale-bridge

Initicll commit:
B eldcl11f756724322c14b88b8c3486620d9dcbal’
Final commit:

m /8cc05b5a49¢550cf92af2cbal46e375¢cf569939

info@blaizetech

BlﬂiZB.SECUFitY Kale Bridge Smart Contact Audit

TECHNICAL
SUMMARY

During the audit, we inspected the security of the smart contracts of
the Kale Bridge protocol. Our task was to find and describe any
security issues in the smart contracts of the platform. This report
presents the findings of the security audit of the Kale Bridge smart
contracts conducted during January 12th, 2023 - January 30th, 2023.

Testable code

INDUSTRY STANDARD

YOUR AVERAGE

0% 25% 50% 75% 100%

The testable code has 99% coverage, which is
above the industry standard of 95%.

The scope of the audit includes the unit test coverage, which is
based on the smart contracts code, documentation, and
requirements presented by the Kale Bridge team. The coverage is
calculated based on the set of the Hardhat framework tests and
scripts from additional testing strategies. However, in order to
ensure full security of the contract, the Blaize.Security team
suggests the Kale Bridge team launch a bug bounty program to
encourage further active analysis of the smart contracts.

info@bioize tech n

BlGiZ'B.SECUTitY Kale Bridge Smart Contact Audit

THE GRAPH OF
VULNERABILITIES
DISTRIBUTION: 18%
. CRITICAL 18%
HIGH B4
MEDILIM
LOWwW
LOWEST
The table below shows the number of the
detected issues and their severity. A total of 1
problems were found. Most of the issues were
successfully fixed by the Kale Bridge team.
FOUND FIXED/VERIFIED
Critical O 0
High 2 2
Medium 0 8]
Low 2 2
Lowest 7 &

info@blaizetech

BlﬂiZB.SECUFitY Kale Bridge Smart Contact Audit

SEVERITY DEFINITION

Critical

The system contains several issues ranked as very
serious and dangerous for users and the secure
work of the system. Requires immediate

fixes and a further check.

High

The system contains a couple of serious issues, which
lead to unreliable work of the system and migh

cause a huge data or financial leak. Requires immediate
fixes and a further check.

Medium

The system contains issues that may lead to
medium financial loss or users’ private information
leak. Requires immediate fixes and a further
check.

Low

The system contains several risks ranked as relatively
small with the low impact on the users’ information
and financial security. Requires fixes.

Lowest

The system does not contain any issues critical to the
secure work of the system, but best practices should
be implemented.

info@bloizetech n

BlGiZ'B.SECUfitY Kale Bridge Smart Contact Audit

AUDITING STRATEGY AND
TECHNIQUES APPLIED/PROCEDURE

We have scanned this smart contract for commonly known and
more specific vulnerabilities:

= Unsafe type inference; = DoS with Block Gas Limit;
= Timestamp Dependence; = DoS with (unexpected) Throw;
= Reentrancy, = Byte array vulnerabilities;
= |mplicit visibility level; = Malicious libraries;
= Gas Limit and Loops; = Style guide violation;
= Transaction-0Ordering = ERC20 API| violation;
Dependence; = Uninitialized state/storage/
= Unchecked external call - local variables;
Unchecked math; = Compile version not fixed.
Procedure

We checked the contract for the following parameters:

= Whether the contract is secure;

= Whether the contract corresponds to the documentation:

= Whether the contract meets the best practices in the efficient use of
gas, code readability.

Automated analysis:

Scanning contract by several publicly available automated
analysis tools such as Mythril, Solhint, Slither, and Smartdec.
Manual verification of all the issues found with these tools.

Manual audit:

Manual analysis of smart contracts for security vulnerabilities.
We checked smart contract logic and compared it with the one
described in the documentation.

info@blaizetech

BlGiZ'B.SECUTitY Kale Bridge Smart Contact Audit

EXECUTIVE
SUMMARY

During the audit, Blaize Security has audited the whole set of
smart contracts within 3 folders. The protocol consists of Kale BNB
ERC20 token, a set of the Bridge smart contracts and a set of smart
contracts necessary for the user and token registry.

The goal of the audit was to analyze the security level of the
smart contracts against the list of common vulnerabilities and
auditors’ own checklist, ensure that Solidity best practices in terms
of code quality and gas optimization are applied, verify the
security of users’ funds and the security of Bridge implementation.

There were 2 high and several low and lowest issues detected
during the manual part of the audit. High-severity issues were
connected to the ability of the owner to withdraw tokens from the
Bridge smart contract and the ability of the signer to claim tokens
in any quantity and to any receiver. Both issues were successfully
resolved by the Bluelight team. To solve the first issue, the team
restrained the owner from withdrawing Bridge tokens, and in order
to refund users, a refund system was implemented. For the second
issue, a system of multiple signers was implemented so that a
certain number of signatures must be provided by the signers to
process claiming. Though the protocol still can work with a single
signer, which is why it is the Bluelight team’s responsibility to keep
sufficient number of signers in the protocol. Also, a single admin
can still claim tokens to any address using the claim function.
Other issues were connected to the lack of variables’ validation,
clarification of the business logic of the protocol, and other minor
things. Most of them were successfully fixed by the Bluelight team
as well. It should also be mentioned that the BNBKale.sol is an
upgradable smart contract, which means that the owner of the
protocol can update its logic at any time. All the issues can be
seen in the Complete analysis section.

info@blaizetech

BlﬂiZ'B.SECUfit‘y‘ Kale Bridge Smart Contact Audit
e

The overall security of the protocol is high enough. Smart
contracts are well-written and contain a detailed natspec
documentation. The Bluelight team has also prepared a set of unit
tests, which have a sufficient coverage. Nevertheless, the
Blaize.Security team has prepared their own set of unit-tests,
including a set of additional scenarios, to verify the security and
correctness of the implementation of the Bridge. Once the fixes
were applied, the protocol has passed all the security tests.

RATING
Security 99
Gas usage and logic optimization 9.8
Code quality 9.6
Test coverage 99
Total 9.8

info@blaizetech n

BlﬂiZ'B.S'E'CUFitY Kale Bridge Smart Cantact Audit

BridgeBase.sol

BridgeBase.sol is a smart contract that inherits SignerRaole, BridgeUserRegistry, EmergencyStop,
BridgeTransfer, and BridgeSigTransfer, BridgeRefundReqguest, BridgeRoles. The smart contract implements the
main functionality for the bridge like transferring assets from one chain to anather,

[] Inheritance tree I 1
SignerRole.sol BridgeTransferscl
EmergencyStop.sal I BricdgeBass.sol BridgeRefundRequest.

1 sol
BridgelserRegistry.sol : BridgeSigTransfersal
BridgeRoles.sol
Usar Sigrver
ulnt256 gmount -- [] [address 1o -- address] []
amount of asset that |é— telaport]) of the user to clalm the claim()
user wants to transfer. tokans to.

cheacks if user is not wint254 amount -- checks that sender is
blacked, amount is maore amount of takens to Signer role, user is not

than minlmum transfer claim blocked

uint254 otherChainNance
_teleport() -- nonce of the teleport _claimi)
on the other chain

-addrass from -- eu:ldr&ss- [] [address to -- address] []
of a user, from whom _teleport() of the user who _chaimi)
wokens will be ransfared. recaeives the tokens.
-ﬂddmss o -- address of- [£ f] [uint2s46 amaount --] [it]
the bridge which will transters tokens from amount of takens checks i
receive the mwkens. user to bridge o claim nonce is right
[ulnt2ss amount --] [] -u'lntzsﬁ otherChuinNoﬂae- [transfers tokens]
nerameants Nonce
amount of tokens to of bridge transfer -- nonoe of the teleport from bridge to
transfar from user an the other chain user

info@mblazetach m

Blaize.Security

Kale Bridge Smort Contact Audit

BridgeBase.sol

[oddress from -- address |
of the user to teleport

the tokens from.

uintz56 amount --
amount of asset to
transfer.

wint2ss deadline --
deadiins for the
signature

bytes3d2r--
signatura's R valua

bytes3ls --
signature's 3 value

Uints v -
signature's V values

[address from -- address |
of the user to teleport

teleport3igl)

checks if user is not
blocked, omount is more

| than minimum transfer |

the tokens from,

. !

uint256 gmount —
amount of gsset to
transfer.

uint2ss deadline --
deadlins for the
signature

bytesld r — signature's
R value

bytesi2 s - signature's
Svalue

uintd v -- signoture’s
W value

s

_teleportSigl)

l

check if deadline
is correct

!

checks if signature is
cormact using ECDSA

l

_teleport(}

[address to -- oddress
of the user to claim the
tokens ta,

uintz56 amount --
amount of tokens to
claim

Uint256 otherChainNance]
-- nonce of the teleport
on the other chain

Signerinfal]
signerinfo -- infg,

User

!

(—{ claimSigl)

preparad by signers,

[oddress to -- oddress |
of the user to claim the

"

tokens to.

‘ l

uint256 amount ==
amount of takens to
claim

.ulntzsb atharC:huinNonoe.
-- nonce of the teleport
on the other chain

wint2ss deadline
-- deadiine for the
signoture

bytesi2 r—- signature’s
R value

bytesd2s —
signature's 5 value

: l :

_claimSigl)

l

check if deadline
Is correct for each
signature

ED

checks if each

is valid
I}

_claim()

signature is correct
using ECDSA and the
amount of signatures

oddress signer_ --

uinte "",';' s:ignature 5 [——! oddress of user, wha
HCHLI created signature

info@blazetech m

Blaize.Security

Kale Bridge Smort Contact Audit

BridgeBase.sol

address[] memeory
wkens -- tokans o

witrhdrow

—

Owner
withdrawTo
kens()

) l ;

tokan,

Check that tokena ore tranfers tokens to owner
not equal to Bridgs

BridgeRefundRequest.sol

BridgeRefundRequesi.sol is o contract that containg
the main functionality for refunding tokens to users,
Usars can request d refund and the awner can
decide whether to opprove or decline it,

[reguestRefund()] [—oppraveRefund(}]

[_declineRefund()] [_reapenRefund()

BridgeTransfer.sol

BridgeTransfer.sol is a contract that contains the
main functionality of transferring and claiming
tokens on the bridge.

_talapart()
transfers tokens from checks if nonce is
userto bndge right

Incraments nonce of transfers (okens
bridge transfar from bridge wo usar

_elaimi)

BridgeUserRegistry.sol

BridgelUserRegistry.sol is a contract that indicates
the user status on the bridge. [ts main function is a
maodifier that checks if uger Is not blocked.

Signer.sol

Signer.sol is an abstract contract that determines
the Signer Role on the bridge. It functlons as a
madifier to check if the sender is a Signer and
tranefer the role to ancther oddress.

BridgeSigTransfer.sol

BridgesigTransfer.sol s a contract that contains the
main functionality of the BridgeTransfer contract
with o signatura.

_telaportsig() _claimsigl
check If deadline is cheack if deadline
comact is comrect for each

L l J L signiiura

checks if signature is
correct using ECDSA

_ | _

_teleport()

checks if sach
signature is corract
Uslngjﬂb&i

—claim()

info@mblazetach

BlﬂiZ'B.S'E'CUFitY Kale Bridge Smart Cantact Audit

Blockchain #1 Blockchain #2

Invokes claimf() Transfers tokens from
function bridge to user

l

Invokes teleport() Transfers tokens
function to bridge

RegistryStorage is on gbstroct upgradable smart

Internal setters for
contract designed to stora the address of blocked setting block status
users and IDs of ERCT21 and ERCISS smart of users and MFTa.
contracts. The contract cantaing internal setters
and gettars for block stotuses, By default, these
functions aren't restricted and don't emit an event

; 7 ey Internal setters for
on any starage change, thus this functionality is ta setting block status of
be implemeantad in the ancestor smMart contract. users and MFTs.

[T
i | RegistryRoles.sol L
] i i]
[[
: : RegistryRoles s an upgradable smart contract that MNew admin role: : :
) : extends the functionality of o standard + OWNER_ROLE : :
: : AcessControl by Openappelin by aodding a new Roles within the smart contract: : :
: : custom admin role and several additional roles, an * USER_BLOCK_ROLE : :
: l external interface for managing roles, and internal * ERCT21_BLOCK_ROLE i :
| | modifiers and functions for checking the roles, * ERCI155_BLOCK_ROLE I
| |
| : : |
{ T
I i i I
[|
| |
: : Deployer :| l Owner : :
&)
i i i |
: i Deploy smart : :
[contract [
| I
I : : I
| i i i
Grant roles e
[N Can grant or revoke Moditiers and [
;o usgﬁ:ﬁgg&?&gw OWMER_ROLE. internal functions : :
Iy ERCTA BLOCK_RDLI% USER_BLOCK_ROLE, fcr_check'rng i L
. ERCIIS5_BLOCK_ROLE L Bt L, RISVl AEOURE L
b 2 ERCNSS_BLOCK_ROLE. ifi i3
L to Deplayer. _ K_ has o specific role |
v i
] i i]
] i i]
| L e B I T e e e S a |
]]
: B = e ' :
| 1 RegistryStorage.sol :
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
I I
| |
]]
]]
I I
]]

info@blazetech E

Blaize.Security

Kale Bridge Smort Contact Audit

BlockUsers.sol

BlockUsers.sol is an upgradable smart
contract that inherits RegistryRoles and
RegistryStorage. The smart contract
implements external functionality for
(un)blocking users individually and in
baotch and also check the block status
of any user.

UserBlocker
address user -- i
address of a user to blockUser()
block. I

‘ l

_changelserBloc
k&ratus{user, true)

of a user to unblock,

Inheritance tree
RegistryRoles.sol
I BlockUsers.sol
RegistryStorage.sol
LserBlocker
address user -- oddress](7 unblockUser)

l

_changslUserBlocks
totusiuser, folse)

UserBlocker
address[] users -- array
AP st 15 Bk F batchBlockUsers()

Block eoch user
in the array,

address[] vsers -- array
of users to unblock.

-

UserBlocksr

l

batchUnbiockisers()

l

Unbklock each
user in the array.

addraess user -- address [
of a user, whose status
w0 change.

bool status -- flag wihch [
indicatas whether to
block or unblock user.

w

_changelsarBloc
kSratus()

Set statws for
provided user,

Emit an svent,
cormesponded 1o status.

|

Extarnal getiers for
checking users block
Sratuses.

|

info@mblazetach

Blaize.Security

Kale Bridge Smort Contact Audit

BlockTokens.sol

BlockTokens.sol is an upgradable smart
contract that inherits RegistryRoles and
RegistryStorage. The smart contract
implements external functionality for
(un)blocking tokens individually and in batch
and check the block status of any token.

Blocker

address
contractAddress -- blockTaken()
MNFT token aoddress.

] [Check that provided token]

I: ERCT21 or ERCNES]

contract is ERCT21 or ERCIISS

and caller is a blocker,

wint25s tokenid —- 1D
of NFT to block.

_cha ngeTaEEHStu
tusicontractaddre
53, tokenid, true)

RegistryRoles.sol

RegistryStoroge.sol

Inheritance tree

—)[BlockTokens.sol :|

contractAddress --

[address

MFT token address.

of NFT to unblock.

[uint256 tokenid -- 1D

|

ERCT2 or ERCIISS
Blocker

l

|

](—I: unblockToken()]

| |

and caller is a blocker,

_changeTokenStat
us{contractAddre
55, tokenid, false)

ERCT21 or ERCIISS
Blocker
address(] : ~L -
cantractAddresses -
array of NFT contracts, [¢ batchBlockTokens()
for which tokens to L i
update stotuses, 5 5

Check intarface of
goch contract addrass

| uint2sa[](] tokenids -- an check that user s o

.' !

address([]

controctAddresses -
array of NFT controcts,
for which tokens to
update statuses,

3

ERCT21 or ERCNSS
Blocker

l

patchunblockTokens()

J
Check interface of
each contract addrass
an check that uger s a

[uint2ss tokenld -- 10 of |
MFT to block/unblock.

| bool status -- status to |
zat for token.

Set block status

Emit a comresponding

l J
for token,
!

avent.

|

arrays with 1Ds for each valid blocker. vint2sa(][] tokenids -- valid blocker.
 token contract to block. i 1 = arrays with 1Ds for o 1
[T adach token contract 1l
Block each o unbloek. Uniblock aedch
wokan. token.
AL = l L l‘ =
address
contractAddress -- NFT s
token address.

External getiers for
checking tokens block
statuses.

Check that provided token
contract is ERCT21 or ERCIISS

|

info@mblazetach

BlﬂiZ'B.SECUfit‘y‘ Kale Bridge Smart Cantact Audit

Registry.sol Inheritance tree

Registry.sol is an upgrodable smart contract . 2 £ -
that inherits all contracts connected to the RegistryStorage. sal RegistryRoles.sol
Block functionality, thus implementing all the ! | L |

logie. The contract also contains several X

getter functions to return users and tokens
block statuses in different combinations (e.g.
the status of a single user and a token, the

BlockUsers.sol BlockTokens.sol

status of a single vuser and multiple tokens,

etc,) 4)[BiockTokens,](—
zol

i
i
i
i
i
i
i
i
I
i
i
i
i
i
e - i
i
I
i
i
i
i
i
i
i
I
i
i
i
i

UserLock.sol Inheritance tree

1

[}

]

;

1

! UserLock.sol is an abstract smart contract . -

; designed to interact with Registry.sol and ERCI6S 20l Usariocksol }
: validate if a specific user is blocked in the L]

i
]
1
1
1
i
i
1
1
1
]

Registry.scl smart contract. Thus, the contract

can be inherited by other smart contracts [) 1 [check if a single user
50 egistny and isn't blocked or multiple
that need such validations. registry stats, s
ERC20UserRegistry.sol Inheritance tree
ERC20UserRegistry.sol is an abstract ERC20
contract where the _beforeTokenTransfer() hook is ERCz20.sal
overriden in order to validate that both the sender L
and the recipient are not blocked in the 4{ ERC20UserRegistry.sal]
Registry.sol. There is also an upgradable version of]
; J UserLock sal
this contract, ERC20UserRegistryUparadeable.sal.

_befareToken i 1 users block] Check that users Procesd the transter
Transfarl) ' sSatuses, : are not blocked. transoction,

info@mblazetach E

BlﬂiZ'B.S'E'CUFitY Kale Bridge Smart Cantact Audit

ERC721UserRegistry.sol Inheritance tree

ERCTZIUserRegistry.sol is an abstract ERC721

contract where the _beforeTokenTransfer() hook is ERCT21.50l
overriden in order to validate that the sender, the L
recipient, and the operator, as well as the 4{ ERCT2IUserRegistry.sol]
transferred tokenld are unblocked in the []
UserLock_sal

i Registry.sol. There is also an upgradable version of i
! this contract, ERC721UserRegistryUpgradeable.sol. : = :

_beforeToken i Gat users and tokenld i Check that users and Proceed the transfer
Transfer() : block statuses, : wkenid are not blochkead. transoction,
Reglstry.sal
e g e e By o s e e P e e e e e e o e |
e e e e e e T e e e e e e e T e e e e e el e T e e T e e e T T e e e e T]
i | .
| | ERCTI55UserRegistry.sol I
{ i |
| i i |
| ERC1155UsarRegistry.sol is an abstroct ERC1155 .
: ; contract where the _beforeTokenTransfer() hook is ERC72) 50l A :
| i
] ovaerriden to validote that the sender, the recipient L
i I
: : and the operator, as well as the transferred ﬁ«'[ERCTISsUsarReglstry.sol ; |
! : tokenlids are not blocked in the Registry.sal. : !
Lo : z Userlock sol b
! There is also an upgradable version of this smart i
A contract, ERCI55UserRegistryUpgradeable.sol, : :
| .
& et |
1y 5 ' !
] I ¥ (]]
I) _beforeToken } Get users and tokenld i Check that users and pProceed the transfer : :
- Transfer() : block statuses, ' tokenids are not blocked transaction. 1
i))
] i ']
| i i |
! [} L !
| i i |
! [} 1 !

info@blazetech m

BlGiZ'B.SECUfitY Kale Bridge Smart Contact Audit

COMPLETE ANALYSIS

+/ Resolved

The owner can withdraw tokens at any time.

BridgeBase.sol; emergencyWithdraw().

The owner account can withdraw any ERC20 token from the
contract's balance, including the token that is transferred across
chains. As a result, in case the private key of the owner account is
exploited, users' funds can be withdrawn directly from the
contract. The issue is marked as high as such functionality crectes
a dangerous backdoor where the owner of the contract has direct
access to users’ funds. Thus, it is usually recommended to remove
such functionality from the contract. In case the withdrawal could
only happen in case of emergency, the owner address should be a
multisig wallet or some sort of a DAO with the Timelock contract
applied and additional restrictions implemented in the contract
(to prevent any rug-pull like activity).

Recommendation:

Confirm the necessity of an emergency withdrawal function and
that the owner account will be a multisig or a DAO.
From the client:

The system to withdraw all tokens was created to mitigate refunds
for users, but it showed as a malicious one. To prevent the owner
from withdrawing all tokens at any time and still be able to perform
refunds for users, a system for performing refunds was
implemented.

Post-audit
The team added new functionality to withdraw tokens that are not

the bridge token. For the bridge token, new refund functionality
was created so that users can request their tokens back.

info@blaizetech m

BlGiZ'B.SECUfitY Kale Bridge Smart Contact Audit

+" Resolved

The Signer has direct access to the funds.

BridgeBase.sol: claim(), claimSig().

As for now, when the user wants to transfer tokens using the bridge,

the Signer set by the owner should invoke the claim function to

transfer tokens to the user on another chain. Although this is
common approach in the work of a cross-chain bridge, where the
backend invokes a function on the other bridge to fulfill the cross-
chain operation, the backend part of the protocol is cut of scope
of the current audit.

The current principle of work of the bridge is as follows:

1) The user calls the teleport function on chain 1 and transfers
N tokens to the bridge.

2) Backend listens to teleport events, parses the data from them
and prepares calldata with the receiver and the amount of
funds for the claim transaction on chain 2.

3) Backend calls the claim function on chain 2 with prepared
calldata, and the funds are transferred to the receiver.

Currently, it is unknown how step 2 is processed and if a valid user

and the amount of funds are specified in the calldata.

Thus, the level of decentralization of backend is unknown, and
there is a risk that the signer account can transfer funds from the
bridge to any account without a corresponding event on the other
chain. That also creates a centralization risk. Therefore, the best
approach is to have on-chain validation of the proofs generated
on both sides, but that is a general recommendation for bridges
rather than this particular case.

Recommendation:

Validate the safety of the Signer's private key and that it will only
be used for cross-chain transfers. Also, validate the safety of
backend and its processing of events and cross-chain transfers.
Post-audit:

A system of multiple signers was implemented in the protocol. Yet,
the protocol can still work with one signer, which means that the
Bluelight team has to keep a sufficient number of signers.

info@blaizetech

BlGiZ'B.SECUfitY Kale Bridge Smart Contact Audit

LOW-1 + Resolved

Parameters lack validation.

1) BlockTokens.sol: blockToken(), unblockToken(), batchBlockTokens(),
batchUnblockTokens().
Parameters that represent tokens addresses should be validated in
order not to be zero addresses.
2) BlockUsers.sol: blockUser(), unblockUser(), batchBlockUsers(),
batchUnblockUsers().
It is recommended to validate that parameters representing users
addresses are not zero addresses, especidally since the block status
of the user is checked in _beforeTokenTransfer() for ERC20, ERC72],
and ERC1155 smart contracts. This hook is also invoked in the _mint()
and _burn() functions, where either the ‘from’ or 'to’ parameter is
passed as a zero address. In case it is designed so that mint() and
burn() functionality can be blocked in such a manner, it should be
validated by the team.
3) Signer.sol: constructor().
4) BridgeTransfer.sol; constructor().
Validate the address parameter during deployment.

Recommendation:

Validate functions parameters.
Post-audit

Necessary validations were added.

info@bloizetech

BlGiZ'E.SE'CUTitY Kale Bridge Smart Contact Audit

LOW-2 + Resolved

Wrong minimum amount might be set during deployment.

BridgeBase.sol: constructory).

When the bridge is deployed, the minimum amount that could be
sent is used with a 18-decimal token. In the case of a token that has
other number of decimals, there should be additional calculations
to get the minimum amount right. Otherwise, it should be verified if
the bridge takes only 18 decimals tokens.

Recommendation:

Validate that only tokens with 18 decimals will be used OR multiply
the amount by 10**decimals for tokens to cover tokens with any
possible decimals.

Post-audit:

The minimum amount of token decimails is set now.

LOWEST-1 +" Resolved

Mappings can be accessed directly in ancestor smart contracts.

RegistryStorage.sol: mappings " userBlockStatus,
_contractTokenldStatus. Internal setter and getter functions designed
to be used in ancestor smart contracts are implemented in the smart
contract for these mappings. However, since both mappings are
internal, they can be accessed in ancestor smart contracts both for
write and read actions. This makes the usage of any additional setters
and getters redundant.

Recommendation:

Consider making mappings private so that they can't be accessed
directly in ancestor smart contracts OR leave them internal and
remove setters and getters.

Post-audit:

Mappings are now private.

info@blaizetech

BlGiZ'B.SECUfitY Kale Bridge Smart Contact Audit

LOWEST-2 " Resolved

Confusing mechanism of roles management.

RegistryRoles.sol
1) During the deployment of the contract, OWNER_ROLE is set as
a default role for every role except for OWNER_ROLE. Thus, all the
roles except for the OWNER_ROLE can be granted/revoked via
the standard AccessControl external functionality (grantRole(),
revokeRole()).

2) The contract contains a duplicate of the AcessControl external
functionality for granting/revoking roles (e.g. addOwner(),
addUserBlocker(), removeUserBlocker()). However, roles can still
be managed via a standard AccessControl external
functionality (grantRole(), revokeRole()) by users with the
OWNER_ROLE. Thus, it should be verified if it is an intended
functionality and roles should be managed both via the
AcessControl and RegistryRoles interfaces.

Recommendation:

1) Set the admin role for OWNER_ROLE as well during the initialization.

2) Either remove the duplication of the AcessControl functionality OR
forbid the standard external functionality of AcessControl OR verify
that roles should be managed both via the AcessControl and
RegistryRoles interfaces.

Post-audit:

1) OWNER_ROLE is now set during the initialization for OWNER_ROLE.
2) It was verified that roles could be managed using both
AccessControl and RegistryRoles interfaces.

info@blaizetech m

BlGiZ'B.SE'CUTitY Kale Bridge Smart Contact Audit

LOWEST-3 Unresolved

Custom errors should be used.

BlockToken sol: _batchSetTokenStatus(), line 104;
_checkinterfaceAndBlocker(), line 178.

BridgeBase.sol: moreThanMinTeleportAmount(), line 30;
BridgeTransfer.sol: _claim(), line 57;

BridgeSigTransfer.sol: _teleportSig(), line 33; _claimSig(), line 63;
checkDeadline(), line &9;

BridgeEmergencyStop.sol: notinEmergencyStopl), line 12;
inEmergencyStopl(),

line 17:

Signed.sol: onlySigner(), line 35; transferSignerRole(), line 51;

Starting from the 0.8.4 version of Solidity, it is recommended to use
custom errors instead of storing error message strings in the storage
and using the “require” statements. Using custom errors is more
efficient in terms of gas expenditure and increases code readability.

Recommendation:

Use custom errors.

LOWEST-4
OWES « Verified

Centralization risk in roles management.

RegistryRoles.sol

Since the OWNER_ROLE is an essential role for the protocol, it is
recommended to grant it only to multisig wallet accounts. Thus, the
risk of private keys being compromised decreases and the
decentralization level increases as it requires multiple users to perform
any owner's action. The issue is marked as the lowest and doesn't
need any changes on the smart contracts.

Post-audit:
According to the team, a multi-sig wallet will be used for
OWNER_ROLE.

info@blaizetech

BlGiZ'B.SECUfitY Kale Bridge Smart Contact Audit

LOWEST-5 v/ Resolved

The Spender is not checked.

ERC20UserRegistry.sol: _beforeTokenTransfer().

In case the transferFrom() transaction is called and
_beforeTokenTransfer() is invoked during it, the spender of the
transaction (msg.sender) is not checked. Thus, in case the spender is in
the block list, they can still invoke transferFrom() transactions. The
issue is marked as the lowest as it regards the business logic of the
contract and should be verified by the team if it might cause an issue
for the protocol. Consider the case where any malicious user or smart
contract that gets approval from valid users can't be banned and can
execute malicious transfers.

Recommendation.
Verify that the spender should not be checked OR check the spender
in the block list as well.

Post-audit:
A Spender check was added.

LOWEST-6 + Resolved

Unnecessary boolean check.

BridgeEmergencyStop.sol: notinEmergencyStop(), inEmergencyStop().
Boolean variables can be used directly. There is no need to compare
them with true or false.

Recommendation.

Remove the equality to the boolean constant.

Post-audit:

The functions were removed, a pausable contract functionality
was added.

info@blaizetech m

BlGiZ'B.SECUfitY Kale Bridge Smart Contact Audit

LOWEST-7 + Verified

Availability of tokens on the next side of the bridge.

BridgeBase.sol: claim().

When the user wants to transfer tokens on one chain, it is unclear how
tokens appear on the bridge on the other chain. For example, the user
wants to transfer 100 tokens from Ethereum to BSC. The user calls the
teleport function, and 100 tokens are transferred from the user to the
bridge on Ethereum. After that, a signer calls the claim function, and
100 tokens have to be transferred from the bridge on BSC to the user.
However, it is unclear how the first tokens will appear on the chain as
there are no functions necessary for funding the bridges. Thus,

it should be verified if the tokens would already be transferred by the
owner, or if there is a balance that is stored on the bridge for such
transfers, or only own tokens will be used with the ability to mint tokens
to the bridge.

Recommendation.
Verify how tokens will appear on the balance of the bridge on the
other chain.

Post-audit:

According to the team, all token supplies are minted and
distributed across supply wallets on the Ethereum chain. On the
BNB Chain, the same amount of tokens is minted and locked on the
bridge contract.

info@blaizetech

Blaize.Security

Kale Bridge Smart Contoct Audit

L 8§ € 8 € 8 8 & 8 & 8 8 8 S 8 8 S

kale-bnb\contracts\BNBKale.sol

user-token-registry\contracts\libraries\VerboseReverts.sol

user-token-registry\contracts\Registry.sol

Re-entrancy

Access Management Hierarchy
Arithmetic Over/Under Flows
Delegatecall Unexpected Ether
Default Public Visibility

Hidden Malicious Code

Entropy lllusion (Lack of Randomness)

External Contract Referencing
Short Address/Parameter Attack
Unchecked CALL Return Values
Race Conditions/Front Running
General Denial Of Service (DOS)
Uninitialized Storage Pointers
Floating Points and Precision
T«.Origin Authentication
Signatures Replay

Pool Asset Security (backdoors in
the underlying ERC-20)

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Fass

Pass

Pass

info@blaizetech

Blaize.Security

Kale Bridge Smart Contoct Audit

X ¥ % § £ § S8 8 € 8K 8 8 A A A8 %

kale-bridge-v2\contracts\

BridgeBase.sol
BridgeBsc.sol
BridgeEmergencyStop.sol
BridgeEth.sol
BridgeSigTransfer.sol
BridgeTransfer.sol
BridgeUserRegistry.sol
Signer.sol
BridgeRefundReguest.sol
BridgeRoles.sol

Re-entrancy

Access Management Hierarchy
Arithmetic Over/Under Flows
Delegatecall Unexpected Ether
Default Public Visibility

Hidden Malicious Code

Entropy lllusion (Lack of Randomness)
External Contract Referencing
Short Address/Parameter Attack
Unchecked CALL Return Values
Race Conditions/Front Running
General Denial Of Service (DOS)
Uninitialized Storage Pointers
Floating Points and Precision
Tx.Crigin Authentication
Signatures Replay

Pool Asset Security (backdoors in
the underlying ERC-20)

Pass

Pass

Pass

Poss

Pass

Pass

Pass

Poss

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

info@blaizetech

Blaize.Security

Kale Bridge Smart Contoct Audit

L SUE O, SR . Sha U S S Sh O Ch V. S Sp S

user-token-registry\contracts\core\
BlockTokens.sol
BlockUsers.sol

RegistryRoles.sol
RegistryStorage.sol

Re-entrancy

Access Management Hierarchy
Arithmetic Over/Under Flows
Delegatecall Unexpected Ether
Default Public Visibility

Hidden Malicious Code

Entropy lllusion (Lock of Randomness)
External Contract Referencing
Short Address/Parameter Attack
Unchecked CALL Return Values
Race Conditions/Front Running
General Denial Of Service (DOS)
Uninitialized Storage Pointers
Floating Points and Precision
Tx.Crigin Authentication
Signatures Replay

Pool Asset Security (backdoors in
the underlying ERC-20)

Pass

Pass

Pass

Pass

Poss

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

info@blaizetech

Blaize.Security

Kale Bridge Smart Contoct Audit

C € € £ € € £ £ £ 8 £ & 8 € 8 <« K«

user-tokenregistry\contracts\extensions\
ERC20UserRegistry.sol
ERC721UserRegistry.sol

ERCN55UserRegistry.sol
UserlLock.sol

Re-entrancy

Access Management Hierarchy
Arithmetic Over/Under Flows
Delegatecall Unexpected Ether
Default Public Visibility

Hidden Malicious Code

Entropy lllusion (Lack of Randomness)
External Contract Referencing
Short Address/Parameter Attack
Unchecked CALL Return Values
Race Conditions/Front Running
General Denial Of Service (DOS)
Uninitialized Storage Pointers
Floating Points and Precision
Tx.Origin Authenticaticon
Signatures Replay

Pool Asset Security (backdoors in
the underlying ERC-20)

Pass

Pass

Pass

Fass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

FPass

Pass

Pass

Pass

Pass

Pass

info@blaizetech

Blaize.Security

Kale Bridge Smart Contoct Audit

C € € £ € € £ £ £ 8 £ & 8 € 8 <« K«

user-token-registry\contracts\
extensions-upgradeable\

ERC20UserRegistryUpgradeable.sol
ERCT721UserRegistryUpgradeable.sol

ERCTIs5UserRegistryUpgradeable.sol
UserLockUpgradeablesol

Re-entrancy

Access Management Hierarchy
Arithmetic Over/Under Flows
Delegatecall Unexpected Ether
Default Public Visibility

Hidden Malicious Code

Entropy lllusion (Lack of Randomness)
External Contract Referencing
Short Address/Parameter Attack
Unchecked CALL Return Values
Race Conditions/Front Running
General Denial Of Service (DOS)
Uninitialized Storage Pointers
Floating Points and Precision
Tx.Origin Authenticaticon
Signatures Replay

Pool Asset Security (backdoors in
the underlying ERC-20)

Pass

Pass

Pass

Fass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

FPass

Pass

Pass

Pass

Pass

Pass

info@blaizetech

BlGiZ'B.SECUfitY Kale Bridge Smart Contact Audit
e

CODE COVERAGE AND TEST RESULTS
FOR ALL FILES
BY THE BLAIZE.SECURITY TEAM

Registry IGetStatus interface
' Set new registry
v Set new registry state (70ms)
BridgeBase
Main functionality
Teleport tokens
Teleport tokens with signature
Claim tokens
Claim tokens with signature
Set minimum teleport amount
Check processed nonce
Start/End emergency
Emergency withdraw
Transfer Signature role
Change registry state
Set registry
Revert
When try to teleport less that minimum amount
When try to teleport when emergency stop
When try to claim when emergency stop
When not signer try to claim
When try to claim with processed nonce
When signature is invalid
When signature expired
When not owner try to set minimum teleport amount
When try to set minimum teleport amount when emergency stop
When try to emergency withdraw when it is not emergency
When not owner try to emergency withdraw
When try to set emergency when it is already in emergency
When try to end emergency when it is not in emergency
When not owner try to set emergency
When not owner try to transfer signer role
When not owner try to set zero address to signer role

info@blaizetech m

SRALCSERSNESENANS

LR ASSESSNESECASNSS SN S

BlﬂiZ'B.SECUfit‘y‘ Kale Bridge Smart Contact Audit
e

Bridge Scenarios

Signer

v Can transfer tokens any time to anycne

Owner

v Can withdraw tokens from bridge (41ms)

Revert

v When not enough tokens on other bridge

v When try to transfer native token to contract

Transfer tokens from one chain to other

" Teleport -> claim

v TeleportSig -> claimSig (43ms)

" TeleportSig -> claim

" Teleport -> claimSig (39ms)

Direct transfer

v’ Before Teleport

v After Teleport

v Before Claim (53ms)

v After Claim (56ms)
ERC1155UserRegistry
Should implement the LockUsers interface
Should implement the ERC1155 interface
Should allow safeTransferFrom without lock
Should revert safeTransferFrom with sender block
Should revert safeTransferFrom with receiver block
Should revert safeTransferFrom with token block
Should allow safeBatchTransferFrom without lock
Should revert safeBatchTransferFrom with sender block
Should revert safeBatchTransferFrom with receiver block
Should revert safeBatchTransferFrom with token block (44ms)
Should revert safeBatchTransferFrom with sender and receiver block (40ms)
Should revert safeBatchTransferFrom with sender and token block (48ms)
Should revert safeBatchTransferFrom with receiver and token block (47ms)
Should revert safeBatchTransferFrom with sender, receiver and
token block (52ms)
Should revert safeBatchTransferFrom with operator block (39ms)
Should allow safeBatchTransferFrom with sender, receiver,
token and operator block and disabled registry (58ms)

info@blaizetech E

Y NEACEENEKNANS

%K

BlﬂiZ'B.SECUfit‘y‘ Kale Bridge Smart Contact Audit

ERC1155UserRegistry

CAEARSIENIESANSKAESNNS

SN

Should implement the LockUsers interface

Should implement the ERCI155 interface

Should allow safeTransferFrom without lock

Should revert safeTransferFrom with sender block

Should revert safeTransferFrom with receiver block

Should revert safeTransferFrom with token block

Should allow safeBatchTransferFrom without lock

Should revert safeBatchTransferFrom with sender block (39ms)

Should revert safeBatchTransferFrom with receiver block

Should revert safeBatchTransferFrom with token block (48ms)

Should revert safeBatchTransferFrom with sender and receiver block (44ms)
Should revert safeBatchTransferFrom with sender and token block (52ms)
Should revert safeBatchTransferFrom with receiver and token block (49ms)
Should revert safeBatchTransferFrom with sender, receiver and token block
(54ms)

Should revert safeBatchTransferFrom with operator block (43ms)

Should allow safeBatchTransferFrom with sender, receiver,

token and operator block and disabled registry (59ms)

ERC20UserRegistry

SANNNASKAES

]
T

4)

Should return true for supported interface of USER_LOCK_HASH
Should transfer tokens without block

Should transfer tokens with block of sender

Should transfer tokens with block of receiver

Should transfer tokens with block of both sender and receiver
Should transfer tokens with blocked user and disabled registry
Should transfer tokens with blocked user and disabled registry
Should transfer tokens with blocked user and disabled registry
Blocked user try send tokens

User try send tokens to blocked user

Burn when address 0 is blocked

Mint when address 0 is blocked

ERC20UserRegistry

v
v’
v

Should return true for supported interface of USER_LOCK_HASH
Should transfer tokens without block
Should transfer tokens with block of sender

info@blaizetach

BlGiZ'B.SECUfitY Kale Bridge Smart Contact Audit

=SS S

Should transfer tokens with block of receiver

Should transfer tokens with block of both sender and receiver
Should transfer tokens with blocked user and disabled registry
Should transfer tokens with blocked user and disabled registry
Should transfer tokens with blocked user and disabled registry

ERC721UserRegistry

SRS AEARKRSSESNEAKS

Should implement the LockUsers interface

Should implement the IERC721 interface

Should implement the IERC721Metadata interface

Should transferFrom tokens without block

Should revert token transferFrom with sender block

Should revert token transferFrom with receiver block

Should revert token transferFrom with token block

Should revert token transferFrom with sender and token block
Should revert token transferFrom with receiver and token block
Should revert token transferFrom with sender, receiver and token block
Should revert token transferFrom with operator block

Should revert token transferFrom with sender, operator, receiver and
token block and disabled registry (43ms)

ERC721UserRegistry

CKASSSSSARAS

Should implement the LockUsers interface

Should implement the IERC721 interface

Should implement the IERC721Metadata interface

Should transferFrom tokens without block

Should revert token transferFrom with sender block

Should revert token transferFrom with receiver block

Should revert token transferFrom with token block

Should revert token transferFrom with sender and token block
Should revert token transferFrom with receiver and token block
Should revert token transferFrom with sender, receiver and token block (38ms)
Should revert token transferFrom with operator block

Should revert token transferFrom with sender, operator, receiver and
token block and disabled registry (44ms)

Registry IGetStatus interface

v
v

Should return true for supported interface of IGetStatus
Should return correct userTokenldBlockStatus

info@blaizetech

BlﬂiZ'B.SECUfit‘y‘ Kale Bridge Smart Contact Audit

Should return correct userTokenldsBlockStatus

Should return correct usersTokenldBlockStatus

Should return correct usersTokenldsBlockStatus

Should return correct usersTokensldsBlockStatus

BlockTokens

Should implement IBlockTokens interface

Should block ERC721 token

Should unblock ERC721 token

Should block ERC1155 token

Should unblock ERC1155 token

Should batch block ERC721 tokens

Should batch unblock ERC721 tokens

Should batch block ERC1S5 tokens

Should batch unblock ERC1ISS tokens

Should batch block ERC721 and ERC1155 tokens

Should batch unblock ERC721 and ERC1155 tokens (53ms)

Should revert if batch blocking ERC721 and ERCI1155 tokens with different lengths
Should revert if batch unblocking ERC721 and ERC1155 tokens with different
lengths

Should batch get token status

Should revert if blocking ERC721 token with invalid role

Should revert if unblocking ERC721 token with invalid role

Should revert if blocking ERC1155 token with invalid role

Should revert if unblocking ERC1155 token with invalid role

Should revert if blocking ERC721 token with ERC1155_BLOCK_ROLE

Should revert if blocking ERC1155 token with ERC721_BLOCK_ROLE

Should revert if unblocking ERC721 token with ERC1155_BLOCK_ROLE

Should revert if unblocking ERC1155 token with ERC721_BLOCK_ROLE

Should revert if blocking token that does not implement ERC721 or ERC1155
Should revert if unblocking token that does not implement ERC721 or ERC1155
Should revert if batch blocking token that does not implement ERC721

or ERC1155

Should revert if batch unblocking token that does not implement ERC721
or ERC1155

Should revert if batch blocking ERC721 and ERC1155 without both roles (68ms)
Should revert if trying to block tokens with USER_BLOCK_ROLE

Should check batch status of ERC721 and ERC11S5 tokens

info@blaizetech E

S SN S

SSAKNEEKRSSSNEANS

LAEARSRSESNEANSAKSS

AN

% S S

BlﬂiZ'B.SECUfit‘y‘ Kale Bridge Smart Contact Audit

v Should not be able to block tokens with ERC721_BLOCK_ROLE removed
v Should not be able to block tokens with ERC1155_BLOCK_ROLE removed
BlockUsers

Should implement the IERC165 interface

Should implement the |IBlockUsers interface

Should add user to owner role (50ms)

Should block a user

Should block multiple users

Should unblock a user

Should unblock multiple users

Should revert if a non-USER_BLOCK_ROLE tries to block a user

Should revert if @ non-USER_BLOCK_ROLE tries to unblock a user
Should revert if a non-USER_BLOCK_ROLE tries to batch block users
Should revert if a non-USER_BLOCK_ROLE tries to batch unblock users
Should return the correct user block status

Should return the correct batch user block status

Should allow a user with the USER_BLOCK_ROLE to block a user
Should not allow a user without the USER_BLOCK_ROLE to block a user
UserLock

Should return true for supported interface of USER_LOCK_HASH
Should get registry

Should get registry

Should change registry

Should change registry state

Should allow unblocked user to perform action

Should revert if blocked user tries to perform action

Should succeed if blocked user tries to perform action and registry is disabled
Should allow to perform batch checks

Should revert if blocked user tries to perform batch checks

Should revert if blocked users try to perform batch checks

Should succeed if blocked users try to perform batch checks and registr
is disabled

UserLockUpgradeable

v Should return true for supported interface of USER_LOCK_HASH

v Should get registry

+ Should get registry

" Should change registry

T TS T I T G T S T T T S

LAEARSRSESNEANSAKSS

info@blaizetech m

Blaize.Security

S SN S

SASKS

Kale Bridge Smart Contoct Audit

Should change registry state
Should allow unblocked user to perform action
Should revert if blocked user tries to perform action

Should succeed if blocked user tries to perform action and

registry is disabled
Should allow to perform batch checks

Should revert if blocked user tries to perform batch checks
Should revert if blocked users try to perform batch checks

Should succeed if blocked users try to perform batch checks and

registry is disabled

BridgeBase

Vi
v

Claim tokens with 9/12 correct signatures (84ms)
Support interface

Refund

v
"
v
v
v

Request refund
Approve refund (39ms)

Decline refund
Reopen refund (39ms)
Process multiple refunds (69ms)

Pausable

v’

Pause/unpause contract (41ms)

Withdrawals

v
"

Withdraw random tokens (57ms)
Withdraw ether

Revert

R XSRS S8 SN

When not enough signatures

When too many signatures

When signature not sorted

When try to process refunds with wrong data

When try to withdraw bridge token

When try to request refund for non-existent transfer
When try to request refund again at the same transfer
When try to approve non-existent refund request
When try to approve refund when delay is not passed
When try to reopen refund when it is not declined
When owner try to revoke own role

When try to renounce/grand/revoke specific role

info@blaizetach

BlGiZ'B.SECUTitY Kale Bridge Smart Contact Audit

Bridge Scenarios
Admin

v Can transfer tokens any time to anyone
Bridge

" Claim is possible if only one signer assigned

218 passing (6s)

TEST COVERAGE RESULTS

FILE % STMTS % BRANCH % FUNCS
Registry.sol 100 100 100
BlockTokens.sol 100 100 100
BlockUsers.scl 100 100 100
ReqgistryRoles.sol 92 100 BB.89
RegistryStorage.sol 100 100 100
ERCNs5UserRegistryUpgradeablesol 100 100 100
ERC20UserRegistrylUpgradeable.sol 100 100 100
ERC721UserRegistryUpgradeable.sol 100 100 100

info@blaizetech E

BlGiZ'B.SECUTitY Kale Bridge Smart Contact Audit

——
FILE % STMTS % BRANCH % FUNCS
UserLockUpgradeable.sol 100 100 100
ERCT55UserRegistry.sol 100 100 100
ERC20UserRegistry.sol 100 100 100
ERC7UserRegistry.sol 100 100 100
UserLock.sol 100 100 100
BMEBKalesol 100 100 100
BridgeBase.scl 100 100 100
BridgeBsc.sol 100 100 100
BridgeEmergencyStop.sol 100 100 100
BridgeEth.sol 100 100 100
BridgeSigTransfer.sol 100 100 100
BridgeTransfersol 100 100 100
BridgelUserRegistry.sol 100 100 100
Signer.sol 100 100 100
BridgeRefundRequest.sol 100 100 100
BridgeRoles.sol 100 100 100
All files 99,63 100 99.5

info@blaizetech E

BlGiZ'B.SECUfitY Kale Bridge Smart Contact Audit
e

CODE COVERAGE AND TEST RESULTS
FOR ALL FILES
BY THE BLUELIGHT TEAM

BNBKale

v/ Should upgrade (62ms)

BridgeEmergencyStop

Should only allow the owner to emergency stop the contract

Should allow the owner to emergency stop the contract

Should allow the owner to end the emergency stop

Should not be active by default

Should not allow the owner to end the emergency stop if it's not active
Should not allow the owner to start the emergency stop if it's already active
Should not allow the owner to withdraw tokens if the emergency stop is not
active

v Should allow the owner to withdraw tokens if the emergency stop is active
BridgeTransfer

+ Should allow changing address of signer role

+" Should allow teleporting tokens with a signature

v Should allow claiming tokens with a signature

BridgeTransfer

v Should allow teleporting tokens

+" Should allow claiming tokens

+" Should not allow teleporting less than the minTeleportAmount

v Should allow setting the minTeleportAmount

BridgeUserRegistry

v Should allow to change registry state

v Should allow to change registry address

+ Should allow to perform action

v Should not allow to perform action by blocking in external registry
ERC20Permit

v Should permit (43ms)

Bridge contract

v Should check balances

v Should transfer from deployer to the bridge(teleport)

v Should transfer from the bridge back to the deployer(claim)

v Should call claim without admin right and fail

info@blaizetech m

SN ASNSN S

BlﬂiZ'B.SECUfit‘y‘ Kale Bridge Smart Contact Audit

ERCNI55UserRegistry

MUST implement the LockUsers interface

MUST implement the ERCIISS interface

MUST allow safeTransferFrom without lock

MUST revert safeTransferFrom with sender block

MUST revert safeTransferFrom with receiver block

MUST revert safeTransferFrom with token block (40ms)

MUST allow safeBatchTransferFrom without lock

MUST revert safeBatchTransferFrom with sender block (44ms)

MUST revert safeBatchTransferFrom with receiver block (38ms)

MUST revert safeBatchTransferFrom with token block (44ms)

MUST revert safeBatchTransferFrom with sender and receiver block (44ms)
MUST revert safeBatchTransferFrom with sender and token block (47ms)
MUST revert safeBatchTransferFrom with receiver and token block (47ms)
MUST revert safeBatchTransferFrom with sender, receiver and token
block (52ms)

MUST revert safeBatchTransferFrom with operator block (43ms)

MUST allow safeBatchTransferFrom with sender, receiver, token and
operator block and disabled registry (56ms)

ERC1I55UserRegistry

AN S AR ELRANS S S

% X

v MUST implement the LockUsers interface

v MUST implement the ERC1I5S interface

v MUST allow safeTransferFrom without lock

v/ MUST revert safeTransferFrom with sender block

v MUST revert safeTransferFrom with receiver block

v MUST revert safeTransferFrom with token block

v MUST allow safeBatchTransferFrom without lock

v MUST revert safeBatchTransferFrom with sender block (38ms)

v MUST revert safeBatchTransferFrom with receiver block

" MUST revert safeBatchTransferFrom with token block (46ms)

v MUST revert safeBatchTransferFrom with sender and receiver block (42ms)

v MUST revert safeBatchTransferFrom with sender and token block (49ms)

" MUST revert safeBatchTransferFrom with receiver and token block (49ms)

v MUST revert safeBatchTransferFrom with sender, receiver and token block
(53ms)

v MUST revert safeBatchTransferFrom with operator block (42ms)

v MUST allow safeBatchTransferFrom with sender, receiver, token and

operator block and disabled registry (59ms)

info@blaizetech m

BlGiZ'B.SECUfitY Kale Bridge Smart Contact Audit

ERC20UserRegistry

S LSS ANSS

MUST return true for supported interface of USER_LOCK_HASH
MUST transfer tokens without block

MUST transfer tokens with block of sender

MUST transfer tokens with block of receiver

MUST transfer tokens with block of both sender and receiver
MUST transfer tokens with blocked user and disabled registry
MUST transfer tokens with blocked user and disabled registry
MUST transfer tokens with blocked user and disabled registry

ERC20UserRegistry

SENEKEAN

MUST return true for supported interface of USER_LOCK_HASH
MUST transfer tokens without block

MUST transfer tokens with block of sender

MUST transfer tokens with block of receiver

MUST transfer tokens with block of both sender and receiver
MUST transfer tokens with blocked user and disabled registry
MUST transfer tokens with blocked user and disabled registry
MUST transfer tokens with blocked user and disabled registry

ERC721UserRegistry

YRS ANS SRS AR

MUST implement the LockUsers interface

MUST implement the IERC721 interface

MUST implement the IERC721Metadata interface

MUST transferFrom tokens without block

MUST revert token transferFrom with sender block

MUST revert token transferFrom with receiver block

MUST revert token transferFrom with token block

MUST revert token transferFrom with sender and token block

MUST revert token transferFrom with receiver and token block
MUST revert token transferFrom with sender, receiver and token block
MUST revert token transferFrom with operator block

MUST revert token transferFrom with sender, operator, receiver and
token block and disabled registry (42ms)

ERC721UserRegistry

v

v
v
v

MUST implement the LockUsers interface

MUST implement the IERC721 interface

MUST implement the IERC72IMetadata interface
MUST transferFrom tokens without block

info@blaizetach

Blaize.Security

LRV ASSN S

MUST revert token transferFrom with receiver block

MUST revert token transferFrom with token block

MUST revert token transferFrom with sender and token block
MUST revert token transferFrom with receiver and token block

MUST revert token transferFrom with sender, receiver and token block (41ms)

MUST revert token transferFrom with operator block

MUST revert token transferFrom with sender, operator, receiver and token block

and disabled registry (43ms)

Registry IGetStatus interface

LYRKEANS

MUST return true for supported interface of |GetStatus
MUST return correct userfokenldBlockStatus

MUST return correct userTokenldsBlockStatus

MUST return correct usersTokenldBlockStatus

MUST return correct usersTokenldsBlockStatus

MUST return correct userslokensldsBlockStatus

BlockTokens

NSNS UAE SNSKSASS

S

SSE$SKNA

MUST implement |IBlockTokens interface
MUST block ERC721 token

MUST block ERC721 token

MUST block ERC155 token

MUST unblock ERC1155 token

MUST batch block ERC721 tokens

MUST batch unblock ERC721 tokens
MUST batch block ERCII55 tokens

MUST batch unblock ERC1155 tokens

MUST batch block ERC721 and ERC1155 tokens

MUST batch unblock ERC721 and ERC1155 tokens (53ms)

MUST revert if batch blocking ERC721 and ERC155 tokens with different
lengths

MUST revert if batch unblocking ERC721 and ERC1155 tokens with
different lengths

MUST batch get token status

MUST revert if blocking ERC721 token with invalid role

MUST revert if unblocking ERC721 token with invalid role

MUST revert if blocking ERC1155 token with invalid role

MUST revert if unblocking ERC1155 token with invalid role

MUST revert if blocking ERC721 token with ERC1155_BLOCK_ROLE

info@blaizetach

Kale Bridge Smart Contoct Audit

BlGiZ'B.SECUfitY Kale Bridge Smart Contact Audit

MUST revert if blocking ERC1155 token with ERC721_BLOCK_ROLE

MUST revert if unblocking ERC721 token with

ERC1155_BLOCK_ROLE

MUST revert if unblocking ERC1I55 token with ERC721_BLOCK_ROLE

MUST revert if blocking token that does hot implement ERC721 or ERC1155
MUST revert if unblocking token that does not implement ERC721 or ERC1155
MUST revert if batch blocking token that does not implement ERC721 or
ERCT1S5

MUST revert if batch unblocking token that does not implement ERC721 or
ERCT1S5

MUST revert if batch blocking ERC721 and ERCNS5 without both roles (70ms)
MUST revert if trying to block tokens with USER_BLOCK_ROLE

MUST check batch status of ERC721 and ERC1155 tokens

MUST not be able to block tokens with ERC721_BLOCK_ROLE removed
MUST not be able to block tokens with ERC1155_BLOCK_ROLE removed
BlockUsers

MUST implement the IERCI165 interface

MUST implement the |IBlockUsers interface

MUST add user to owner role (48ms)

MUST block a user

MUST block multiple users

MUST unblock a user

MUST unblock multiple users

MUST revert if a non-USER_BLOCK_ROLE tries to block a user

MUST revert if a non-USER_BLOCK_ROLE tries to unblock a user

MUST revert if a non-USER_BLOCK_ROLE tries to batch block users

MUST revert if @ non-USER_BLOCK_ROLE tries to batch unblock users
MUST return the correct user block status

MUST return the correct batch user block status

MUST allow a user with the USER_BLOCK_ROLE to block a user

MUST not allow a user without the USER_BLOCK_ROLE to block a user
UserLock

MUST return true for supported interface of USER_LOCK_HASH

MUST get registry

MUST get registry

MUST change registry

MUST change registry state

info@blaizetech m

& S A& SS

LERNRERNEENEKCUANCNSSEACSSKSANS

SR ANS

BlUiZ'B.SECUfitY Kale Bridge Smart Contact Audit

S %

% % KK

MUST allow unblocked user to perform action

MUST revert if blocked user tries to perform action

MUST succeed if blocked user tries to perform action and registry is
disabled

MUST allow to perform batch checks

MUST revert if blocked user tries to perform batch checks

MUST revert if blocked users try to perform batch checks

MUST succeed if blocked users try to perform batch checks and registry is
disabled

UserLock

SENEKEAN

L

MUST return true for supported interface of USER_LOCK_HASH
MUST get registry

MUST get registry

MUST change registry

MUST change registry state

MUST allow unblocked user to perform action

MUST revert if blocked user tries to perform action

MUST succeed if blocked user tries to perform action and registry is
disabled

MUST allow to perform batch checks

MUST revert if blocked user tries to perform batch checks

MUST revert if blocked users try to perform batch checks
firas)succeed if blocked users try to perform batch checks and registry is
disabled

173 passing (6s)

TEST COVERAGE RESULTS
FILE % STMTS % BRANCH % FUNCS
Registry.sol 100 100 100
BlockTokens.sol 100 100 100
BlockUsers.sol 100 100 100
RegistryRoles.sol 22 100 88,89

info@blaizetech

BlGiZ'B.SECUfitY Kale Bridge Smart Contact Audit

s
FILE %% STMTS %% BRANCH %% FUNCS
Registrystorage.sol 100 100 100
ERCNasUserRegistryUpgradeablesol 100 100 100
ERC20UserRegistryUpgradeable.sol 100 100 100
ERC721UserRegistryUpgradeable sol 100 100 100
UserLockUpgradeable.sol 100 100 100
ERC155UserRegistry.sol 100 100 100
ERC20UserRegistry.sol 100 100 100
ERC721UserRegistry.sol 100 100 100
UserLock.sol 100 100 100
BNBKale.sol 7778 100 &0
BridgeBase.sol 100 100 100
BridgeBsc.sol 100 100 0
BridgeEmergencyStop.sol 100 100 100
BridgeEth.sal 100 100 100
BridgesSigTransfer.sol 100 50 100
BridgeTransfer.sol 100 S0 100
BridgeUserRegistry.sol 100 100 100
Signer.sol 100 75 100
All files Q8,63 94,32 9313

info@blaizetech m

Blaize.Security

Kale Bridge Smart Contoct Audit

DISCLAIMER

The information presented in this report is an intellectual property
of the customer, including all the presented documentation, code
databases, labels, titles, ways of usage, as well as the information
about potential vulnerabilities and methods of their exploitation.
This audit report does not give any warranties on the absolute
security of the code. Blaize.Security is not responsible for how you
use this product and does not constitute any investment advice.

Blaize.Security does not provide any warranty that the working
product will be compatible with any software, system, protocol, or
service and operate without interruption. We do not claim the
investigated product is able to meet your or anyone else's
requirements and be fully secure, complete, accurate, and free of
any errors and code inconsistency.

We are not responsible for all subseguent changes, deletions, and
relocations of the code within the contracts that are the subjects
of this report.

You should perceive Blaize.Security as a tool that helps investigate
and detect any weaknesses and vulnerable parts that may
accelerate the technology improvements and faster error
elimination.

info@blaizetech

	1
	2
	3
	4
	5
	6
	7
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30
	31
	32
	33
	34
	35
	36
	37
	38
	39
	40
	41
	42
	43
	44
	45
	46
	47
	48

