Blaize.Security

March 22nd, 2023/ V.1.0

A BINARYX

BINARYX
SMART CONTRACT AUDIT

a 9

Blaize.Security Binaryx Smart Contact Audit

TABLE OF
CONTENTS

Audit Rating 2
Technical Summary 3
The Graph of Vulnerabilities Distribution A
Severity Definition 5
Auditing strategy and Techniques applied/Procedure 6
Executive Summary 7
Protocol Overview 8
Complete Analysis 20
Code Coverage and Test Results for All Files (Binaryx) 33
Test Coverage Results (Binaryx) 35
Code Coverage and Test Results for All Files (Blaize Security) 37
Test Coverage Results (Blaize Security) 45
Disclaimer 47

security@blaizetech n

Blaize.Security Binaryx Smart Contact Audit

Binaryx contract’s
source code was
taken from the

provided
by the Binaryx
Protocol team.

SCORE 9.8/10

The scope of the project includes Binaryx set of contracts:

contracts\v3

AccessManager.sol KycStore.sol
AddressesProvider.sol Oracle.sol

Asset.sol OracleFactory.sol
AssetPriceOracle.sol PropertyFactory.sol
BNRXToken.sol RewardsDistributor.sol
CommissionsDistributor.sol UiProvider.sol
CoreManager.sol UsdtfToken.sol
Repository:

https://github.com/binaryx-protocol/binaryx_app

Branch: main

Initial commit:

B 9e3lbfbaf39d49bl5c8ebfbed3e3dbd58aa09e5cd

Final commit:

B 092fbce303350b5e95fa767e4712759502442791

security@blaize.tech E

https://github.com/binaryx-protocol/binaryx_app

Blaize.Security Binaryx Smart Contact Audit

TECHNICAL
SUMMARY

During the audit, we examined the security of smart contracts for
the Binaryx protocol. Our task was to find and describe any
security issues in the smart contracts of the platform. This report
presents the findings of the security audit of the Binaryx smart
contracts conducted between February 17th, 2022 and March

22nd, 2022.
Testable code
0% 25% 50% 75% 100%

The code is 100% testable, which
corresponds to the industry standard of 95%.

The scope of the audit includes the unit test coverage, which is
based on the smart contract code, documentation and
requirements presented by the Binaryx team. The coverage is
calculated based on the set of Hardhat framework tests and
scripts from additional testing strategies. However, to ensure the
security of the contract, the Blaize.Security team suggests that the
Binaryx team launch a bug bounty program to encourage further
active analysis of the smart contracts.

security@blaizetech H

Blaize.Security

Binaryx Smart Contact Audit

THE GRAPH OF
VULNERABILITIES
DISTRIBUTION: 20%
B crmca
60%
HIGH
15%
MEDIUM
LOW 5%
LOWEST
The table below shows the number of the
detected issues and their severity. A total of 16
problems were found. 14 issues were fixed or
verified by the Binaryx team.
FOUND FIXED/VERIFIED
Critical 0 0
High 2 2
Medium 1 1
Low 5 5
Lowest 8 6

security@blaizetech n

Blaize.Security Binaryx Smart Contact Audit

SEVERITY DEFINITION

Critical

The system contains several issues ranked as very
serious and dangerous for users and the secure
work of the system. Requires immediate

fixes and a further check.

High

The system contains a couple of serious issues, which
lead to unreliable work of the system and migh

cause a huge data or financial leak. Requires immediate
fixes and a further check.

Medium

The system contains issues that may lead to
medium financial loss or users’ private information
leak. Requires immediate fixes and a further
check.

Low

The system contains several risks ranked as relatively
small with the low impact on the users’ information
and financial security. Requires fixes.

Lowest

The system does not contain any issues critical to the
secure work of the system, yet is relevant for best
practices

security@blaizetech B

Blaize.Security Binaryx Smart Contact Audit

AUDITING STRATEGY AND
TECHNIQUES APPLIED/PROCEDURE

We have scanned this smart contract for commonly known and
more specific vulnerabilities:

» Unsafe type inference; = DoS with Block Gas Limit;
= Timestamp Dependence; = DoS with (unexpected) Throw;
= Reentrancy; = Byte array vulnerabilities;
= Implicit visibility level, = Malicious libraries;
» Gas Limit and Loops; = Style guide violation;
= Transaction-Ordering = ERC20 API violation;
Dependence; = Uninitialized state/storage/
= Unchecked external call - local variables;
Unchecked math; = Compile version not fixed.
Procedure

We checked the contract for the following parameters:

= Whether the contract is secure;

= Whether the contract corresponds to the documentation;

= Whether the contract meets the best practices in the efficient use of
gas, code readability.

Automated analysis:

Scanning contracts by several publicly available automated
analysis tools such as Mythril, Solhint, Slither, and Smartdec.
Manual verification of all the issues found with tools.

Manual audit:

Manual analysis of smart contracts for security vulnerabilities.
We checked smart contract logic and compared it with the one
described in the documentation.

security@blaizetech n

Blaize.Security Binaryx Smart Contact Audit

EXECUTIVE
SUMMARY

The audited protocol is a marketplace of tokenized real estate that
bridges the real estate market and the rapidly developing world of
DeFi projects. The contracts are designed in such a way that they
allow the administrator to have full control over the status of the
asset, while the money of the user who participates in the
purchase of the asset is completely under his control.

Contracts have all the possibilities for selling assets. All conditions
of sale are transparent to the user. The role of the administrator is
only to change the state of an asset. Likewise, the rules by which
changes in the state of an asset occur are fixed in smart contracts.

No critical issues were found. Two high issues were associated with
asset price changes down and the ability of the admin to change
the state to any of the states without fixed conditions. These two
issues have been fixed, as have others.

The overall security is high enough. Contracts’ code has good
readability and fulfills the necessary logic.

RATING
Security 9.8
Gas usage and logic optimization 9.5
Code quality 10
Test coverage 10
Total 9.8

security@blaizetech

Blaize.Security

Binaryx Smart Contact Audit

OracleFactory.sol

|

|

|

|

|

|

|

|

i

|

I address owner --
: address of owner for
i oracle

! L

: l

: address buyToken
|

|

]

|

]

]

-- address of
token to buy asset

Oracle.sol

Status _status --
oracle status.

address _owner --
new owner address.

10racleType oracleType
== oracle type.

Qwner

|

setStatus()

!

Sets new status

Owner

Checks that _owner!
= zero address

L

Sets new owner
address

string name --
name for oracle.

The OraclefFactory contract serves as d central hub for managing oracles within the protocol. It provides
a streamlined interface for administrators to list new oracles and get already deployed oracles.

SuperOracle

!

deployOracie()

!

Creates Oracle
contract

Type _oracleType
-- oracle type.

address _member
-- address of new
member.

Owner

!

setOracleType()

!

Sets new oracle
type

Owner

N

addMember()

W

Adds new member to
member mapping

W

Adds member to
members array

info@blaze.tech

Blaize.Security Binaryx Smart Contoct Audit

BINARYX

CoreManager.sol

The CoreManager contract serves as a central hub for managing assets within the protocol. It provides o
streamlined interface for administrators to list new assets, update asset data and documents, and collect rental
fees from users. This contract is a crucial component of the protocol's asset management system, and it helps to
ensure that assets are managed efficiently and transparently.

1 I
i |
i i
i |
i i
i i
i i
i i
i I
i i
i I
i |
i i
i |
i I
i |
i I
i I
| r q r - |
i I
! Owner Owner !
1 L a 3 J |
1 |
I I
! b W |
I |
] . |
| setStatus() setStatus() I
i i
I |
i i
I |
I L L |
I |
PropertyFactory.sol
: il b Sets new status Sets new status i
|
I .
[} |
: ! |
| |
: Sets new status ¢ setStatus() :
| |
I |
| |
I |
1 I
1) 1
! RewardsDistributorsol :
I
I |
I |
| |
I |
I |
I |
| |
I |
i - - - - i
1 . o |
; Oowner Owner !
| L Y L 4 |
1 |
| |
1 k4 W !
| |
: setStatus() setStatus() :
1
| |
1 1
1 I
1 N W I
I |
: Sets new status Sets new status :
|
I .
1 |
: l |
I |
: setStatus() :
I |
| |
1 |
| |
1 |
I |
1 |
I |
1 I
[} |
1 I
1 I

info@blazetech n

Blaize.Security Binaryx Smart Contact Audit

PropertyFactory.sol

The PropertyFactory contract serves as a central hub for managing assets within the protocol. It provides
a streamlined interface for administrators to list new assets and get already deployed assets.

CoreManager.sol

Owner

| S .

string name --
name for asset.

e R

o

deployAsset()

string symbol -- Creates Asset Assetsol
symbol for asset. contract -

N

uint256 maxTotalSupply
== amount of total
supply

N

address buyToken
-- address of
token to buy asset

UiProvider.sol

The UiProvider contract optimizes data queries from the Ul by aggregating calls to different contracts and
collecting data that needs to be displayed on the Ul This reduces the number of calls that need to be
made to the blockchain, which can improve performance and reduce the number of requests. The contract
provides a simplified and efficient way to access data and endables a better user experience.

getRewards() getMyRewards()

]]
I I
I |
| |
| |
I]
I 1
I I
I]
I |
I |
i I
I I
I I
I I
I I
| |
| |
I |
: getAssets() getAssetSellProgress() :
I I
I I
| |
| |
I I
I I
I I
I I
I I
| |
| |
l |
: getMyRewardsTotal() :
| |
| |
I I
I I
I I

info@blaze.tech m

Blaize.Security

Binaryx Smart Contact Audit

Asset.sol

address recipient -~

Anyone

address to whom mint
tokens.
uint256 amount --]

amount of tokens to
mint.

Checks that msg.sender

A

Checks that asset
is active

N

Gets latest price

is passed KYC

L

Transfers buyToken

_

for asset

Mints asset to

from user to contract

address seller --
address to whom
transfer buyTokens.

Changes status to
Confirmed

recipient

RewardsDistributor.sol

SuperOracle

W

confirmSelling()

L

Checks that status is
not SoldOut

N

Pays commission to
CommissionsDistributor

L 3

Transfers buyTokens
to seller

Status _status --
status variable.

uint256 startindex
-- start index.

l

uint256 endindex
-- end index.

Burns asset tokens
from buyers

l

Deletes buyers
from array

~

A

Checks that msg.sender

The Asset contract is a foundational protocol component, providing the basic functionality for managing
individual property tokens. It enables users to invest in assets by purchasing tokens and tracks the status of
those tokens to ensure that investments are handled accurately. Additionally, it manages the storage of asset
data and documents, as well as the asset update mechanism.

SuperOracie

W

setStatus()

L3

is SuperOracle

L3

Sets new status

SuperOracle

W

rejectSelling()

e

Checks that status is
Active or NotSoldOut

N

Checks that startindex
<= endindex()

Transfers buyToken
to buyers

info@blaze.tech

Blaize.Security

Binaryx Smart Contact Audit

CoreManager.sol

RewardsDistributor.sol

s

address _token --
address of asset to
i add to pool.
[uint256 decimals --

decimals of given
account.

uint256 _totalSupply
-- total supply in pool.

address _user --
address of user to
update balance.

vint256 _balance --
balance of user's

asset.

Calculates pending
amount

Updates user's
balance and rewards

™

™

Owner

Checks that pool is
not exists

L3

Adds info to
registeredAssets array

Asset

address _token --
address of asset to in
pool to initialize.

W

onUserBalanceCh
anged()

L3

Checks that pool
exists

L3

Updates pool

W

Gets user info

-

address _user --
address of user from
who receiver could
claim tokens.

address _receiver --
address of receiver to
claim tokens.

[Mints asset to
[recipient

The RewardsDistributor contract is responsible for managing the distribution of rewards to investors based on
their investments in the protocol. It tracks the share of investment in each token and uses this data to calculate
and distribute rewards accordingly. Additionally, it allows administrators to pay for rent and distribute a portion
of those fees as a commission to the protocol, with the remainder allocated for investment rewards.

Owner

W

initializePool()

N

Checks that pool not
initialized yet

N

Sets variable
isinitialized to true

Assetsol

Owner

N

setClaimReceiver()

w

Checks if msg.sender
== _user

N
Sets
claimReceiver[_user]

= _receiver

info@blaze.tech

Blaize.Security Binaryx Smart Contact Audit

RewardsDistributor.sol

The RewardsDistributor contract is responsible for managing the distribution of rewards to investors based on
their investments in the protocol. It tracks the share of investment in each token and uses this data to calculate
and distribute rewards accordingly. Additionally, it allows administrators to pay for rent and distribute a portion
of those fees as a commission to the protocol, with the remainder allocated for investment rewards.

] I
i I
i I
i I
i |
i |
i |
i |
i I
i |
i I
i |
i i
i |
1 I
i |
1 I
i I
1 I
i I
1 I
: CoreManagersol i
1 [2 l
: User i r
I ! N | |
1 - - | | |
! i setStatus() P
] & = 3 W i | | |
! address _user -- I I I
; address of user to € claim() : : :
| clohssoker= | @490 9 9 990 | e |
| = = = = |
1 |
: . . v - l
| address|] _tokens -- U |
e pdates pool for every

: address of tokens to token in given array _ 4 !
| L claim.] L i i
| Owner |
1]
] e N i d
1 I
| Calculates rewards for |
! every token for user - p - N q L
! | y i address token -- I
; address of assetto ¢ payForRent() :
| pay commision for. I
| - W - = e " - |
: Transfers calculated :
1 reward token to user - ¥ - - ¥ - |
| - E uint256 amount -- Checks that pool is i
1 amount of reward tokens. initialized I
] L > L x |
I |
1 |
: = B3 = = w - !

I
[uint128 startTime -- start Checks that |
; time to pay commision. startTime < endTime i
1 - = ~ 1
] I
: e h 4 - - h e :
: uint128 endTime -- end . lronsffers reward » :
1 time to pay commision, OXANS oM OWNerto !
! !] I contract] |
1 1
1]
| = v : |
! Pays commission to :
\ CommissionsDistributor |
I L - |
1]
I |
| _ 4 - |
I |
! Updates token !
! pool |
I - = |
1 |
I |
1 I
I |
1 I
1 I
1 I
1 I

info@blaze.tech E

Blaize.Security Binaryx Smart Contact Audit

AccessManager.sol

The AccessManager contract is responsible for managing access control to other smart contracts within the
protocol. It allows administrators to define specific user roles and permissions, enabling fine-grained control
over the protocol's operations. Additionally, it provides a mechanism for verifying access in other contracts,
ensuring that only authorized users are able to perform certain actions.

Owner Owner

R R

address user -- address address user -- address

to add to Super Oracle. addSuperOracle() to remove from Super removeSuperOracle()
i l] Oracle. I l]
Adds userto Removes user from
_superQOracles mapping _superOracles mapping
address user -- ﬂddmﬁ address user -- address
to add to Kyc Oracle. addKycOracle() to remove from Kyc removeKycOracle()
|] Oracle. I l]
Adds userto Removes user from
_kycOracles mapping _kycOracles mapping

|
I
|
I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Owner Owner |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1
|
|
|
1
|
1
|
1
|
1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

info@blaze.tech

Blaize.Security

Binaryx Smart Contact Audit

AssetPriceOracle.sol

is accurate and up-to-date.

address asset --
address of asset

5

to set price to.
uint256 price -- price
for asset.

address asset --
address of asset
to remove.

SuperOracle

L

setAssetPrice()

W

Checks that price > 0

L

Sets price and
timestamp to
assetPrice mapping

SuperOracle

W

removeAsset()

L

Checks that asset is in
assetPrice mapping

W

Deletes asset from
assetPrice mapping

address asset --
address of asset
to set price to.

!

uint256 price -- price
for asset.

Y

Checks that asset is not
added already

Sets price and

assetPrice mapping

The AssetPriceOracle contract is responsible for managing the prices of all real estate assets within the protocol.
It enables administrators to add new assets and update prices as needed, ensuring the protocol's pricing data

SuperOracle

L

addAsset()

L

L

timestamp to

info@blaze.tech

Blaize.Security

Binaryx Smart Contact Audit

KycStore.sol

address userAddress
-- address of user.

!

string country --
country string

string calldata
countrylso3 -- country
string to deny

KycAdmin

L3

approvewithCountry()

W

Adds user to users
mapping

w

Adds user's country to
userCountries mapping

W

Adds timestamp to
approvedAt mapping

SuperOracle

l

denylso3Country()

|

Adds country to
restrictediso3Countries

mapping

address
userAddress --
address of user.

bool
_isEnabledIinTheApp --
boolean to check if
kyc enabled.

string calldata
countrylso3 -- country
string to allow

](7

The KycStore contract is responsible for storing user data that has passed KYC and has been approved by an
administrator. This data is required for a user to invest in an Asset.

KycAdmin

disable()
Remove user from users
mapping

KycAdmin

setlsKycEnabledin
Theapp()

iskycEnabledinTheApp =
_isEnabledInTheApp

SuperOracle

allowlso3Countr
v

" Removes country from i
restrictediso3Countries

mapping

info@blaze.tech

Blaize.Security

Binaryx Smart Contact Audit

CommissionsDistributor.sol

The CommissionsDistributor contract is responsible for managing and distributing commissions for investment

rewards and fees within the protocol. It provides a centralized interface for administrators to track and distribute

commissions, enabling efficient and transparent management of the protocol's financial operations.

address _asset --
address of asset to
set commission.

Commissicninfo[]
memory
_commissions --
commission info

address
propertyToken --
address of asset in
reward distributor.
address
commissionToken --
address of token to
pay commission
uint256 totalAmount
-- amount to pay

SuperOracle

L

setinvestments

o

Commission()

N
Deletes asset from
investmentsCommission
mapping

L 3

Checks that
commission <= 100%

N
Adds commission info
for asset to
investmentsCommission

mapping

SuperQOracle

L

payRentCommission()

W

Checks total supply of
property token

L

Gets rentCommission
info

W

Pays commission

address _asset --
address of asset to

set coTission.

Commissioninfo[]
memory
_commissions --
commission info

address
commissionToken --
address of token to
pay commission

\)

uint256 totalAmount
== amount to pay

ES

SuperOracle

L

setPayForRent
Commission()

N
Deletes asset from
rentCommission
mapping

w

Checks that
commission <=100%

N

Adds commission info
for asset to
rentCommission
mapping

SuperOracle

W

paylnvestments
Commission()

N

Gets investments
Commission info

L

Pays commission

info@blaze.tech

Blaize.Security Binaryx Smart Contact Audit

AddressesProvider.sol

The AddressesProvider contract serves as a central registry for all of the protocol's smart contracts. It provides a
standardized interface for accessing the addresses of each contract, ensuring that contracts can interact with
one another seamlessly.

] I
i I
i I
i I
i |
i |
i |
i |
i I
i |
i I
i |
i i
i |
1 I
i 7 n r |
1 I
[Owner Owner |
1 I
i L . L . I
1 I
1]
: bytes32id - id for address o :
i e € setAddress() _rewardDistributor -- setRewardsDistributo |
| - . J L i address of | r() | !
i RewardDistributor. i
1]
! 2 = = = i 2 |
: address newAddress Adds address to Adds address to :
, -- address to add to _addresses mapping _addresses)
i address list.] | using id | mapping using I
: REWARDS_DISTRIBUTOR :
i bytes i
I - = |
1 |
]]
1 I
1 |
1 |
! e r “ |
1]
! owner owner I
1]
1 d L 4 I
1 I
1 |
| address r . address - y I
: _ﬂsseatgg:::scs}r;cle = setAssetPriceOracle() Jﬂgmﬂgﬂrz:;‘gfm setRewardsDistributor i
' == Admi [
| AssetPriceOracle. L . RewardDistributorAdm - minh E |
I i |
, | | .
] " - . - |
! Adds address to Adds address to :
\ _addresses _addresses |
! mapping using mapping using I
: ASSET_PRICE_ORACLE REWARD_DISTRIBUTOR_A :
1 bytes DMIN bytes |
; L J L

. i
] I
1 I
1 I
1 1
1 I
1 7 1
: Owner Owner :
I] L] :
i l l |
1]
! address - . address - . :
! Amne:’%zr::z:gfmi A= setEmergencyAdmin() -P rog:l;tr::sc;?ry - setPropertyFactory() !
: EmergencyAdmin. L l - PropertyFactory. L l . !
I |
I |
| - - - - |
: Adds address to Adds address to :

_addresses _addresses

: mapping using mapping using :
! EMERGEMNCY_ADMIN PROPERTY_FACTORY !
| i bytes] I bytes] !
I i
1 I

info@blaze.tech m

Blaize.Security Binaryx Smart Contact Audit

AddressesProvider.sol

The AddressesProvider contract serves as a central registry for all of the protocol's smart contracts. It provides a
standardized interface for accessing the addresses of each contract, ensuring that contracts can interact with
one another seamlessly.

] I
i I
i I
i I
i |
i |
i |
i |
i I
i |
i I
i |
i i
i |
1 I
i 7 n r |
1 I
[Owner Owner |
1 I
i L J L J I
1 I
1]
l address [) address i 1 I
: _propertyFactoryAd setPropertyFactory _coreManager -- setCoreManager() :
; min -- address of Admin() address of {
i PropertyFactoryAdmin. = = CoreManager. = = I
1]
. | | |
1 i Fh oy =5]
: Adds address to Adds address to i
H _addresses _addresses mapping i
| mapping using using CORE_MANAGER !
: PROPERTY_FACTORY_AD bytes :
| MIN bytes - = |
I - = |
1 |
]]
1 I
1 |
1 |
1]
1 - - -~]
1 I
: Oowner Owner :
1 I
| B - B N l
1 |
' dd] [] dd [] '
; address . - address setCommissions !
! _accessManager-- |€ setAcc anager() _commissionDistributor Distributor() !
| address of L i -- address of L J |
! AccessManager. l CommissionDistributor. l I
I i |
I _ ~ _ - |
I |
I Adds address to Adds address to i
; _addresses mapping —addresses !
; using ACCESS_MANAGER mapping using i
y bytes COMMISSION_DISTRIBU |
[L e TOR bytes |
I |
1 I
1 I
1 1
1 I
1 1
1 .. . |
1 1
: Owner !
1]
1 o =]
] l]
1]
I - - |
1]
address _address --
: address of KycStore. satitycstora() :
] .. A |
I |
I |
1 l |
I B 9 |
1 Adds address to |
: _addresses mapping :
| using KYC_STORE bytes |
I)) |
1 I
1 I

info@blaze.tech m

Blaize.Security Binaryx Smart Contact Audit

COMPLETE ANALYSIS

+ Resolved

Users might receive less than they invested in case selling is
rejected.

Asset.sol: rejectSelling(), line 141.
When a user invests in Asset the amount of buyToken, he might
spend, depends on the price received from the Oracle. During the
rejecting of selling, users might receive more or less of buyToken,
depending on the price, at which they have invested.
For example:
+ Userl wants to buy 5 Asset tokens. The price of buyToken is
currently 2S. Userl spends 5 * 2 =10 buyTokens.
+ User2 wants to buy 10 Asset tokens. The price of Asset has
changed and is currently 3S. User2 spends 10 * 3 = 30 buyTokens.
 Later, rejectSelling() is called and the amount of Asset is
calculated based on totalSupply and the amount of buyToken
on Asset's balance. Current total supply is 15 Asset tokens. There
are 40 buyTokens on the Asset's balance.
« Userl will receive 5 * 40 /15 = 13.3 buyTokens.
+ User2 will receive 10 * 40 /15 = 26.6 buyTokens.
Thus, user2 will receive less than he has invested.

Recommendation:

Verify that such functionality is correct and users might receive less
than they have invested OR refund the exact amount which users
invested. Notify users that they might receive less than they
invested in case implementation should stay as is.

security@blaizetech m

Blaize.Security Binaryx Smart Contact Audit

+ Resolved

Super Oracle can change the status of Asset without restriction.

Asset.sol: setStatus().

Address with role Super Oracle is able to change the status of
Asset. This can affect the total flow of the protocol.

For example, in case of investing has been successful and the
status has been changed to SoldOut, confirmSelling() can be
called, and all collected buyTokens will be transferred from Asset to
Seller, and the status will be changed to Confirmed.

However, after that, the status can be changed to Active or
NotSoldOut making a rejectSelling() function callable and allowing
Super Oracle to call it and burn Asset tokens from the balances of
buyers. Though only Super Oracle can change

the status of asset, such functionality leaves a dangerous
backdoor on the contract. Which is why it is recommended to
restrict this functionality, for example, by restricting from which to
which state can the status be changed.

Recommendation:

Consider adding a restriction on the way, Super Oracle can
change the status of the Asset.

security@blaizetech m

Blaize.Security Binaryx Smart Contact Audit

MEDIUM-1 + Resolved

Transfer is not validated.

Asset.sol: invest(), line 80; confirmSelling(), line 125; rejectSelling(), line
147,

RewardsDistributor.sol: safeRewardTokenTransfer(), line 236,238;
payForRent(), line 249

Transferring is performed with a regular transfer() method from the
OpenZeppeling IERC20 interface without validation if transfer is
successful. In order to ensure the security of the transfer it is
recommended to validate the success of the transfer call. Thus, it is
recommended to use SafeERC20 library and replace transfer() with
safeTransfer() function.

Recommendation:
Use SafeERC20 library.

+ Resolved

Fractional amount of asset can't be bought.

Asset.sol: invest().

When a user wants to invest in Asset, he provides an amount
without decimals (e.g 1,10, 12, etc). Decimals are added to the
provided amount later. Thus, a fractional amount of Asset can't be
passed. In case an initial value of leftToBuy was set to a fractional
amount in the constructor, a fraction couldn't be bought. Due to
this, the status of Asset wouldn't be changed to SoldQut in invest().
However, the issue is marked as low, since Super Oracle will still be
able to set SoldOut status with setStatus().

Recommendation:

Verify that leftToBuy’ won't contain fraction OR allow users to
provide value with fraction in invest() function.

security@blaizetech m

Blaize.Security Binaryx Smart Contact Audit

+ Resolved

Same user might be pushed to the array of buyers.

Asset.sol: _afterTokenTransfer(), line 103.

When a user is pushed to an array of buyers, it is not validated if he
is already in the array. Thus, an array can store the same users,
who have invested or received Asset several times. Though the
issue doesn't prevent contract from working correctly and
rejectSelling() works fine even with repeatable elements, it is
recommended to avoid adding the same users to array.

Recommendation:

Track if the user is already in the array. For example, with the usage
of additional mapping, so that array buyers store only unique
values.

+ Resolved

Array of buyers might contain empty elements and is not always
cleaned.

Asset.sol: rejectSelling().

When a refunded user is removed from an array of buyers, the
value is removed with operator delete which simply sets the value
of the element to zero address. Thus, the number of elements is not
changed and the array might contain empty elements. In such
cases, the most common approach is to swap the value of the
element to remove the value of the last element in the array and
pop the last element out of the array.

Also, in case the balance of buyer is 0, user is not removed from the
array (lines 137-138).

Recommendation:

Remove empty elements from the array. Ensure that processed
users are removed in all cases.

security@blaizetech E

Blaize.Security Binaryx Smart Contact Audit

+ Resolved

Change of balance is tracked for zero address.

Asset.sol: _afterTokenTransfer(), line 108.

When Asset tokens are minted or burnt, _afterTokenTransfer() is
called and sender or recipient is passed as zero address. Thus, in
RewardsDistributor.sol: onUserBalanceChanged(), info about zero
address will be updated (in ‘'userfToRewards and
‘'userToRewardUniq’). Though the balance of zero address is equal
to zero, updating information for it in RewardsDistributor.sol
increases gas spendings for invest() and rejectSelling() functions.

Recommendation:

Do not call onUserBalanceChanged() for zero address.

« Resolved

Unlimited allowance.

Asset.sol: _payCommission(), line 157.

An unlimited allowance in buyToken is granted to
commissionDistributor in _payCommission(). Though,
CommissionsDistributor is a part of the protocol, this contract is
upgradeable, so it is not recommended to grant an unlimited
allowance.

Recommendation:

Approve only a specific amount of tokens, necessary to pay
commission.

security@blaizetech m

Blaize.Security Binaryx Smart Contact Audit

LOWEST-1 Unresolved

Custom errors should be used.

Starting from the 0.8.4 version of Solidity, it is recommended to use
custom errors instead of storing error message strings in storage
and use “require” statements. Using custom errors is more efficient
in terms of gas spending and increases code readability.

Recommendation:

Use custom errors.

LOWEST-2 Unresolved

Stick to solidity style guide.

It is better to stick to the style guide, it helps to read smart
contracts and makes it easier to search for and interact with a
smart contract.

Recommendation:

Stick to solidity style guide.

LOWEST-3 « Resolved

Function can be marked as pure.

BNRXToken.sol: getV(), line 28 can be marked pure.

Recommendation:

Change the modifier to pure.

security@blaizetech E

Blaize.Security Binaryx Smart Contact Audit

LOWEST-4 + Resolved

Token implementation should be clarified.

BNRXToken.sol:

VERIFIED

1) It should be noted that the token is upgradeable. Most of the
centralized exchanges might not list token upgradeable
functionality. The upgradeability of the token is not trustworthy for
users as well.

RESOLVED

2) Token inherits ERC20BurnableUpgradeable, which allows anyone
to burn their tokens. Though burnable functionality is not a security
issue by itself, it might be used by malicious actors to affect the
price of a token.

RESOLVED

3) Token inherits PausableUpgradeable, but none of the operations
can be paused: transfer, burn, and mint can’'t be paused.

Recommendation:

Verify that the token should be upgradeable. Verify that token
should be burnable and anyone should be able to burn their
tokens OR consider restricting burn function, so that only specific
addresses can burn. Remove PausableUpgradeable or add the
ability to pause necessary operations.

security@blaizetech m

Blaize.Security

Binaryx Smart Contact Audit

LOWEST-5 + Resolved

Lack of events.

KycStore.sol: disable(), setiskycEnabledIinTheAppl(),
denylso3Country(), allowlso3Country().

AccessManager.sol: addKycOracle(), removeKycOracle(),
removeSuperOracle(), addSuperOracle().

AssetPriceOracle.sol: setAssetPrice(), addAsset(), removeAsset().
RewardsDistributor.sol: setClaimReceiver().

In order to keep track of historical changes in storage variables, it is
recommended to emit events on every change in setters.

Recommendation:

Emit event in setters.

LOWEST-6 + Resolved

Unused mapping.

RewardsDistributor.sol: ‘claimReceiver.
Mapping is defined, and there is a setter for it. However the values
from mapping are not used in the code.

Recommendation:

Use mapping or verify that it is necessary for future updates.

LOWEST-7 + Resolved

Duplicated code.

Asset.sol: setStatus(), lines 114-115.

In the function given lines checks that msg.sender is SuperOracle,
but in contrast there exists a modifier onlySuperOracle, that checks
the same.

Recommendation:

Use a modifier instead.

security@blaizetech

Blaize.Security Binaryx Smart Contact Audit

LOWEST-8 + Resolved

Users cannot unstake their tokens manually.

Asset.sol: rejectSelling()

Only superQracle can unstake users' tokens. According to the info
from the website, the users can unstake anytime. If the sale round
for assets has an end time, it is better to keep user funds until the
end of the round of sales. Thus, users will be able to see how much
time their funds are blocked on your smart contract. At the
moment, if the superOracle does not use the function, users will not
be able to get their tokens back.

Recommendation:

Use the time of sale round in order to give users an understanding
of how long their funds are blocked, and when they can withdraw
their funds themselves.

security@blaizetech m

Blaize.Security

Binaryx Smart Contact Audit

—

contracts\v3
AccessManager.sol
AddressesProvider.sol
Asset.sol
AssetPriceOracle.sol

v/ Re-entrancy Pass

v/ Access Management Hierarchy Pass

v/ Arithmetic Over/Under Flows Pass

v/ Delegatecall Unexpected Ether Pdss

v/ Default Public Visibility Pass

v/ Hidden Malicious Code Pass

v/ Entropy lllusion (Lack of Randomness) Pass

v/ External Contract Referencing Pass

v/ Short Address/Parameter Attack Pass

v/ Unchecked CALL Return Values Pass

v/ Race Conditions/Front Running Pass

v/ General Denial Of Service (DOS) Pass

v/ Uninitialized Storage Pointers Pass

+ Floating Points and Precision Pass

v/ Tx.Origin Authentication Pass

v Signatures Replay Pass

v/ Pool Asset Security (backdoors in the Pass

underlying ERC-20)

security@blaizetech

Blaize.Security

Binaryx Smart Contact Audit

—

contracts\v3
BNRXToken.sol
CommissionsDistributor.sol
CoreManager.sol
KycStore.sol

v/ Re-entrancy Pass

v/ Access Management Hierarchy Pdss

v/ Arithmetic Over/Under Flows Pass

v Delegatecall Unexpected Ether Pass

v/ Default Public Visibility Pass

v/ Hidden Malicious Code Pass

v/ Entropy lllusion (Lack of Randomness) Pass

v/ External Contract Referencing Pass

v/ Short Address/Parameter Attack Pass

v/ Unchecked CALL Return Values Pdss

v/ Race Conditions/Front Running Pass

v/ General Denial Of Service (DOS) Pass

+ Uninitialized Storage Pointers Pass

v/ Floating Points and Precision Pass

v/ Tx.Origin Authentication Pass

v/ signatures Replay Pass

v/ Pool Asset Security (backdoors in the Pass

underlying ERC-20)

security@blaizetech

Blaize.Security

Binaryx Smart Contact Audit

—

contracts\v3
Oracle.sol
OracleFactory.sol
PropertyFactory.sol
RewardsDistributor.sol

v/ Re-entrancy Pass

v/ Access Management Hierarchy Pdss

v/ Arithmetic Over/Under Flows Pass

v Delegatecall Unexpected Ether Pass

v/ Default Public Visibility Pass

v/ Hidden Malicious Code Pass

v/ Entropy lllusion (Lack of Randomness) Pass

v/ External Contract Referencing Pass

v/ Short Address/Parameter Attack Pass

v/ Unchecked CALL Return Values Pdss

v/ Race Conditions/Front Running Pass

v/ General Denial Of Service (DOS) Pass

+ Uninitialized Storage Pointers Pass

v/ Floating Points and Precision Pass

v/ Tx.Origin Authentication Pass

v/ signatures Replay Pass

v/ Pool Asset Security (backdoors in the Pass

underlying ERC-20)

security@blaizetech

Blaize.Security

Binaryx Smart Contact Audit

—

contracts\v3
UiProvider.sol
UsdtfToken.sol

v/ Re-entrancy Pass

v/ Access Management Hierarchy Pdss

v/ Arithmetic Over/Under Flows Pass

v Delegatecall Unexpected Ether Pass

v/ Default Public Visibility Pass

v/ Hidden Malicious Code Pass

v/ Entropy lllusion (Lack of Randomness) Pass

v/ External Contract Referencing Pass

v/ Short Address/Parameter Attack Pass

v/ Unchecked CALL Return Values Pdss

v/ Race Conditions/Front Running Pass

v/ General Denial Of Service (DOS) Pass

+ Uninitialized Storage Pointers Pass

v/ Floating Points and Precision Pass

v/ Tx.Origin Authentication Pass

v/ signatures Replay Pass

v/ Pool Asset Security (backdoors in the Pass

underlying ERC-20)

security@blaizetech

Blaize.Security

LTSN SKSSKASKSS S KNS

AN

N N

Binaryx Smart Contact Audit

CODE COVERAGE AND TEST RESULTS FOR
ALLFILES, PREPARED BY BINARYXTEAM

AssetPriceOracle

deploys

with valid params (8750ms)

addAsset

is denied for it's owner (158ms)

is allowed by super oracle (57ms)

KycStore

deploys

returns non existing (40ms)

approves and return existing (104ms)

disable and return as disabled (65ms)

empty country should be allowed (62ms)

Rest countries country should be allowed (41ms)
denies and allows country (123ms)
RewardDistributor

Deploy RewardDistributor (138ms)

Add pool (263ms)

Pay for rent (1049ms)

Claim reward flow (3 users) with more then 1
emission point (1308ms)

Claim reward flow (3 users) in one emission point (1276ms)
Claimable reward (3 users) with more then 1
emission point (1269ms)

Claimable reward (2 users) in one emission point (675ms)
User should get their reward even if they claimed
already (942ms)

AccessManager

deploying

with default values (12739ms)

super oracles

can be added and removed (89ms)

kyc oracles

can be added and removed (113ms)

security@blaizetech

Blaize.Security

Binaryx Smart Contact Audit

Asset

Deploy Asset (503ms)

Invest in Asset without KYC should throw (279ms)
Invest in Asset with KYC should pass (383ms)
Change status (237ms)

Confirm Selling with commissions (631ms)

Reject Selling with distribution invest USDT (737ms)
should throw transfer without KYC (373ms)
should transfer with KYC (409ms)

UiProvider

list (public)

returns empty results (42ms)

returns all results (2517ms)

return needed fields (485ms)

getMyRewards

return needed fields + rewards (1705ms)

do not stack records (740ms)

S S O O . S

NS

%S

34 passing (38s)

security@blaizetech

Blaize.Security Binaryx Smart Contoct Audit

TEST
COVERAGE
RESULTS

FILE % STMTS % BRANCH % FUNCS
AccessManager.sol 75 50 87.5
AddressesProvider.sol 83.33 45.83 83.33
Asset.sol 95.89 48.33 90.48
AssetPriceOracle.sol 35.71 33.33 50
BNRXToken.sol 0 0 0
CommissionsDistributor.sol 83.33 45.45 7273
CoreManager.sol 55.81 2813 46.67
KycStore.sol 7778 Lh 44 80
Oracle.sol 0 0 0
OracleFactory.sol 0] 12.5 20

security@blaizetech E

Blaize.Security

Binaryx Smart Contact Audit

—
FILE % STMTS % BRANCH % FUNCS
PropertyFactory.sol 87.5 50 83.33
RewardsDistributor.sol 91.59 63.75 75
UiProvider.sol 69.23 100 83.33
UsdtfToken.sol b6.67 100 b6.67
All files 587 44.4] 5993

security@blaizetech

Blaize.Security

Binaryx Smart Contact Audit

CODE COVERAGE AND TEST RESULTS
FOR ALL FILES, PREPARED BY BLAIZE
SECURITY TEAM

AccessManager:

S SESKSSSCSSKSS

Should not initialize twice

Should get version

User should not be KycOracle by default
User should not be SuperOracle by default
Admin should add and remove SuperQOracle
Not admin should not add SuperQOracle

Not admin should not remove SuperOracle
Admin should add and remove KycOracle
Not admin should not add KycOracle

Not admin should not remove KycOracle

AddressesProvider:

s
v

SECSKESNSSSSESSS

SESSESSS

Should not initialize twice

Should get version

Owner should set parameters

Should set new address by ID

Should set REWARDS_DISTRIBUTOR
Should set ASSET_PRICE_ORACLE

Should set REWARD_DISTRIBUTOR_ADMIN
Should set EMERGENCY_ADMIN

Should set PROPERTY_FACTORY

Should set PROPERTY_FACTORY_ADMIN
Should set CORE_MANAGER

Should set ACCESS_MANAGER

Should set COMMISSION_DISTRIBUTOR
Should set KYC_STORE

User (not owner) should not set parameters
Should not set new address by ID

Should not set REWARDS_DISTRIBUTOR
Should not set ASSET_PRICE_ORACLE
Should not set REWARD_DISTRIBUTOR_ADMIN
Should not set EMERGENCY_ADMIN
Should not set PROPERTY_FACTORY

security@blaize.tech

Blaize.Security

SSSKSS

Asset

SRS SKSSKSS

SSS S

LSS KRS SKSSESESKSSS

Binaryx Smart Contact Audit

Should not set PROPERTY_FACTORY_ADMIN
Should not set CORE_MANAGER

Should not set ACCESS_MANAGER

Should not set COMMISSION_DISTRIBUTOR
Should not set KYC_STORE

Main

Get version

Set payment token range

Set ChainLink price oracle

Set sale end date

Invest (73ms)

Tokens sold out (64ms)

Confirm selling (83ms)

Reject selling (164ms)

Reject selling as user (141ms)

Updating

Status (186ms)

Asset info

Asset location data

Documents

Revert

When try to initialize contract again
When not admin try to set token range
When not admin try to set ChainLink oracle
When not admin try to set sale end

When try to set sale end if time is less that current time

When status is not Active

When amount is O

When amount is more that left to buy
When rewardsDistributor is not set
When oracle is not set

When price is not set (41ms)

When user does not pass kyc

When recipient does not pass kyc (69ms)

When not Super oracle try to change status
When try to confirm sale if sender is not super oracle

security@blaize.tech

Blaize.Security Binaryx Smart Contact Audit

CSALURNEAENSNSNSEANCNK NSNS

When try to confirm sale if status is not SoldOut

When try to confirm sale if seller is zero address (67ms)
When commissionDistributor is not set (76ms)

When try to reject sale if sender is not super oracle
When try to reject sale if seller is status is not Active or NotSoldOut
When try to reject sale if start index > end index

When try to reject sale if end index > buyers

When try to reject sale as user if status is not Active
When try to reject sale as user if sale has not ended
When try to reject sale as user if user is not buyer
When not super oracle try to update asset info

When not super oracle try to update asset location
When not super oracle try to add documents

When not super oracle try to update documents
When documentindex > documents length

Audit check High-1 (fixed)

NS N SA

User gets less tokens when rejected if price change

Asset price is 28

Invest as first user for 5 asset tokens (10 buyTokens) (38ms)

Asset price changed to 33

Invest as second user for 10 asset tokens (30 buyTokens)

Reject selling for users

Check, that initial buyToken user balances == user balances now

AssetPriceOracle

CSCE UK S

CSAOCCKKK

Main

Get version

Set asset price

Set multiple assets price

Add asset

Add multiple assets

Remove asset

Revert

When try to initialize contract again

When not super oracle try to set asset price
When not super oracle try to add asset
When not super oracle try to remove asset
When asset price is 0

When assets and price should be same length

security@blaize.tech m

Blaize.Security

v

Binaryx Smart Contact Audit

When asset already exist

v When add assets and price should be same length
v When asset does not exist
BNRXToken
Mai
v/ Getversion
v/ Approve
v Increase/Decrease allowance
v Transfer
v/ TransferFrom
v/ Pause/unpaus
Revert
v When try to initialize contract again
v When not owner try to pause/unpause
v When try to transfer when contract is paused
v When try to transferFrom when contract is paused
v When try to increase/decrease allowance when

v

contract is paused
When try to approve tokens when contract is paused

CommissionsDistributor

$S

SSES S8

S SS

v
v

Getters

Should get version

Should get rent commission

Setters

Should set investments commission

Shouldn't set investments commission by

everyone but admin

Shouldn't set investments commission with invalid percent
Shouldn't set rent commission with invalid percent
Shouldn't set rent commission by everyone but admin
Pay commission operations

Should pay investments commission (41ms)

Should pay commission with fixed amount (39ms)
Shouldn't pay rent commission by everyone but
rewardDistributor

Shouldn't pay commission when amount less than commission

Should revert when commission is more than amount

security@blaize.tech

Blaize.Security Binaryx Smart Contact Audit

CoreManager

§S SSSS8SS8SS S8S8SS SSSS S

S S

Getters

Should get version

Emergency operations

Should revert emergency call without reason string

Should emergency call

Should revert with error message

Shouldn't make emergency call by everyone but

emergency admin

Pay rent

Should pay rent (339ms)

Shouldn't pay rent without needed allowance (230ms)

Should pay rent if pool already initialized (269ms)

Shouldn't pay rent by everyone but coreManagerAdmin (223ms)
Listing asset with post updates

Should list asset (164ms)

Shouldn't listAsset by everyone but coreManagerAdmin (84ms)
Should update docs (174ms)

Shouldn't update docs by everyone but coreManagerAdmin (158ms)
Should add docs (177ms)

Shouldn't add docs by everyone but

coreManagerAdmin (163ms)

Should update asset info (308ms)

Shouldn't update asset info by everyone but
coreManagerAdmin (157ms)

Should update asset location data (167ms)

Shouldn't update asset location data by everyone but
coreManagerAdmin (165ms)

v/ Should update all asset data (234ms)

v/ Shouldn't update all asset data (151ms)
KycStore:

v/ Should not initialize twice

v Should get version

v KycAdmin should approve with country

v Not KycAdmin should not approve with country

v KycAdmin should disable user

security@blaize.tech m

Blaize.Security

ey
v Not KycAdmin should not disable user
v KycAdmin should set is kycEnabled
v Not KycAdmin should not set is kycEnabled
v/ SuperOracle should deny and allow Iso3Country
v Not SuperOracle should not deny Iso3Country
v Not SuperOracle should not allow Iso3Country
v/ User should get isOperable
Oracle
Main
v/ Set status
v/ Set oracle type
v/ Set owner
v/ Add member
v/ Update document
Revert
v When owner is 0 address
v When documentindex > documents length
v When not owner try to set status
v When not owner try to set oracle type
v When not owner try to set owner
v When not owner try to add member
v When not owner try to add document
v When not owner try to update document
OracleFactory
Main
v/ Deploy oracle
Revert
v When try to initialize contract again

v
v

Binaryx Smart Contact Audit

When not super oracle try to deploy oracle
When owner address is 0

PropertyFactory

SSKS

Main

Get version

Get beacon

Get implementation
Deploy oracle (43ms)

security@blaize.tech

Blaize.Security

Vv
v

Binaryx Smart Contact Audit

Revert
When try to initialize contract again
When not super oracle try to deploy oracle

RewardsDistributor

v
v/

XSS

SEKESSSSKS

SEASRSSKESSSSESSS

Initialization

Should initialize correctl

Shouldn't initialize when addressesProvider and
rewardToken are zero addresses

Getters

Should get version

Should get reward token

Shouldn't check onUserBalanceChanged with non-existent
pool

Pool operdtions

Should add pool

Shouldn't add pool twice

Should add pool only by owner

Should initialize pool

Shouldn't initialize pool by everyone but owner

Shouldn't initialize already initialized pool

Should return O when call
calculateActualEmissionPointPerPool if schedule has zero
length

Rewards operations

Should pay rent (108ms)

Shouldn't pay rent by everyone but owner (75ms)
Shouldn't pay rent with non-initialized pool (69ms)
Shouldn't pay rent with 0 amount (72ms)

Shouldn't pay rent with endTime less than startTime (72ms)
Should claim rewards (2 user, 1 emission point) (203ms)
Claimable rewards should be [0] (96ms)

Should add base claimable when transferring tokens (158ms)
Should claim rewards (1 user, 1 emission point) (170ms)
Should claim rewards (2 user, 2 emission point) (250ms)
Should return 0 claimable rewards if 0 emission points (11Tms)
Shouldn't pay rent if emissions invalid setted (147ms)
Shouldn't claim rewards if there is no added pools (4Ims)

security@blaize.tech

Blaize.Security

Binaryx Smart Contact Audit

v/ Shouldn't pay rent commission if there is no added pools (71ms)
UiProvider

v Should get asset info and asset sell progress (294ms)

v/ Should get rewards and user total rewards (418ms)

Asset operations

Rewdrds operations

UsdtfToken

L8 S8 KKK

SSS S

Main

Decimals

Get limit amount

Get limit time

Mint

User mint

Demo mint

Admin functions

Change amount limit

Change time limit

Revert

When user has already minted

When not admin try to demo mint

When not admin try to change amount limit
When not admin try to change time limit

217 passing (12s)

security@blaize.tech

Blaize.Security Binaryx Smart Contoct Audit

TEST
COVERAGE
RESULTS

FILE % STMTS % BRANCH % FUNCS
AccessManager.sol 100 100 100
AddressesProvider.sol 100 100 100
Asset.sol 97.6 89.68 96.55
AssetPriceOracle.sol 100 100 100
BNRXToken.sol 100 100 100
CommissionsDistributor.sol 100 100 100
CoreManager.sol 100 100 100
KycStore.sol 100 100 100
Oracle.sol 100 100 100
OracleFactory.sol 100 100 100

security@blaizetech m

Blaize.Security Binaryx Smart Contact Audit

—
FILE % STMTS % BRANCH % FUNCS
PropertyFactory.sol 100 100 100
RewardsDistributor.sol 99.06 92.86 100
UiProvider.sol 100 100 100
UsdtfToken.sol 100 100 100
All files 99.8 98.8 99.8

security@blaizetech

Blaize.Security Binaryx Smart Contact Audit

DISCLAIMER

The information presented in this report is an intellectual property

of the customer, including all the presented documentation, code
databases, labels, titles, ways of usage, as well as the information
about potential vulnerabilities and methods of their exploitation.
This audit report does not give any warranties on the absolute
security of the code. Blaize.Security is not responsible for how you
use this product and does not constitute any investment advice.

Blaize.Security does not provide any warranty that the working
product will be compatible with any software, system, protocol or
service and operate without interruption. We do not claim the
investigated product is able to meet your or anyone else’s
requirements and be fully secure, complete, accurate, and free of
any errors and code inconsistency.

We are not responsible for all subsequent changes, deletions, and
relocations of the code within the contracts that are the subjects
of this report.

You should perceive Blaize.Security as a tool, which helps to
investigate and detect the weaknesses and vulnerable parts that
may accelerate the technology improvements and faster error
elimination.

security@blaizetech

	Title Page
	Severity Definition
	Graph of vulnerability
	Page#3
	Audit rating
	Auditing technics
	Binaryx - scheme
	Binaryx - scheme-1
	Binaryx - scheme-2
	Binaryx - scheme-3
	Binaryx - scheme-4
	Binaryx - scheme-5
	Binaryx - scheme-6
	Binaryx - scheme-7
	Binaryx - scheme-8
	Binaryx - scheme-9
	Binaryx - scheme-10
	Binaryx - scheme-11
	Complete analysis
	Contents
	Executive Summary
	Page#9
	Page#9-1
	Page#9-2
	Page#9-3
	Page#9-4
	Page#9-5
	Page#9-6
	Page#9-7
	Page#11
	Page#11-1
	Page#11-2
	Page#11-3
	Page#12
	Page#12-1
	Page#12-2
	Page#12-3
	Page#12-4
	Page#12-5
	Page#12-6
	Page#12-7
	Page#12-8
	Page#12-9
	Page#13
	Page#13-1
	Page#13-2
	Page#13-3
	Page#14

