
SMART CONTRACT AUDIT

Everstake

March 10th, 2023 / v.	1.0

Everstake Smart Contact Audit

1security@blaize.tech

Table of

 Contents
Audit rating 2

Technical summary 3

The graph of vulnerabilities distribution 4

Severity Definition 5

Auditing strategy and Techniques applied \ Procedure 6

Executive summary 7

Complete Analysis 10

Code coverage and test results for all files (Everstake) 24

Code coverage and test results for all files (Blaize Security) 26

Test coverage results (Blaize Security) 28

Disclaimer 29

Test coverage results (Everstake) 25

Protocol overview 9

Everstake Smart Contact Audit

2security@blaize.tech

Everstake contract’s
source code was
taken from the
repository provided
by the Everstake
team.

SCORE 10 /10

audit

 rating

The scope of the project is Everstake set of contracts during
1st audit iteration:

PoolB2B.sol 
ValidatorList.sol

Intial commit (audited):
Branch: master

94de9df108ff62907cbd66cc2c0d5968b8de3980

20fbdaeb6b5310a218ea8a89c920dfb35feba815
Final commit (post-audit):

Repository:
https://github.com/everstake/ETH-Staking-B2B-SC

https://github.com/everstake/ETH-Staking-B2B-SC

Everstake Smart Contact Audit

3security@blaize.tech

Technical

 summary

Testable code

In this report, we consider the security of the contracts for the
Everstake protocol. Our task is to find and describe security issues
in the smart contracts of the platform. This report presents the
findings of the security audit of Everstake smart contracts
conducted between February 23rd, 2023 - March 10th, 2023

Security team ensured, that the testable code corresponds the
industry standard. That includes both coverage and manual tests
for the uncovered logic.

The scope of the audit includes the unit test coverage, that bases
on the smart contracts code, documentation and requirements
presented by the Everstake team. Coverage is calculated based on
the set of Hardhat framework tests and scripts from additional
testing strategies. Though, in order to ensure a security of the
contract Blaize.Security team recommends the Everstake team put
in place a bug bounty program to encourage further and active
analysis of the smart contracts.

INDUSTRY STANDARD

your average

100%75%50%25%0%

Everstake Smart Contact Audit

4 security@blaize.tech

Critical

High

Medium

Low

Lowest

0

0

0

2

14

FOUND

0

0

0

2

14

FIXED/VERIFIED

The table below shows the number of found issues
and their severity. A total of 16 problems were
found, most of which were connected to gas
optimization. All of them were successfully fixed by
the Everstake team.

87,5%

The graph of
vulnerabilities
distribution:

high

medium

lowest

low 12,5%

Everstake Smart Contact Audit

5security@blaize.tech

Severity Definition

A system contains several issues ranked as very
serious and dangerous for users and the secure 
work of the system. Needs immediate 
improvements and further checking.

Critical

A system contains a couple of serious issues, which 
lead to unreliable work of the system and migh 
cause a huge information or financial leak. Needs
immediate improvements and further checking.

High

A system contains issues which may lead to
mediumfinancial loss or users’ private information
leak. Needs immediate improvements and further
checking.

Medium

A system contains several risks ranked as relatively 
small with the low impact on the users’ information 
and financial security. Needs improvements.

Low

A system does not contain any issue critical to the 
secure work of the system, yet is relevant for best

Lowest

Everstake Smart Contact Audit

6security@blaize.tech

Auditing strategy and
Techniques applied \ Procedure

In our report we checked the contract with the following parameters:

Procedure

Whether the contract is secure;

Whether the contract corresponds to the documentation;

Whether the contract meets best practices in efficient use of gas,
code readability;

We have scanned this smart contract for commonly known and
more specific vulnerabilities:

Unsafe type inference;

Timestamp Dependence;

Reentrancy;

Implicit visibility level;

Gas Limit and Loops;

Transaction-Ordering
Dependence;

Unchecked external call -
Unchecked math;

DoS with Block Gas Limit;

DoS with (unexpected) Throw;

Byte array vulnerabilities;

Malicious libraries;

Style guide violation;

ERC20 API violation;

Uninitialized state/storage/ 
local variables;

Compile version not fixed.

Automated analysis:

Scanning contract by several public available automated analysis
tools such as Mythril, Solhint, Slither and Smartdec. Manual
verification of all the issues found with tools.

Manual audit:

Manual analysis of smart contracts for security vulnerabilities.
Checking smart contract logic and comparing it with the one
described in the documentation.

Everstake Smart Contact Audit

7security@blaize.tech

Executive

 summary

 Blaize Security team has received a set of contracts prepared by
the Everstake team. Contracts include

 PoolB2B.sol - a staking smart contract which allows users to
deposit ETH, which is then staked by a specific validator on
beacon chain

 ValidatorList.sol - library, which simplifies the work with the list of
validators.

 The goal of the audit was to ensure the correctness of
interaction with Beacon chain deposit smart contract, validate
that smart contracts are optimized in terms of gas usage, and
Solidity best practices, validate smart contracts against the list of
common vulnerabilities.

 There were several low and lowest issues found during the
manual audit. Low issues described the unused fee variable and
unused functions, while the lowest issues were connected to gas
optimization, validation of logic, and other improvements of smart
contracts. Everstake team has successfully fixed or verified all of
the issues found. Additionally, auditors have proposed several gas
optimizations in order to decrease gas costs of functions. All the
issues and proposed optimizations can be seen in Complete
analysis section.

 Blaize Security team has also prepared a set of fork-tests in
order to validate the correctness of smart contract’s logic and
interaction with Beacon Chain deposit smart contract.

 The overall security of smart contracts is high enough. Contracts
are well-written, contain a natspec documentation, and a gas-
optimized.

Everstake Smart Contact Audit

8security@blaize.tech

Security

Gas usage and logic optimization

Code quality

Test coverage**

Total

10

10

10

10

10

**Contract has a native coverage prepared by the Everstake team,
though Blaize Security has prepared their own set of unit tests and
additional scenarios to cover the whole code. The mark shows the
final testable code.

RATING

Everstake Smart Contact Audit

9info@blaze.tech

E v e r s t a k e

User

Stake

Deposit

Set pending
operators

Contract Beacon Chain

Governer

ETH

ETH

Validator

Validator

Validator

Validator

Validator

Pending validators

Everstake Smart Contact Audit

10security@blaize.tech

Complete Analysis

PoolB2Bl.sol: _poolFee variable, FEE_DENOMINATOR constant,
setFee(), fee()

Fee functionality is not used in the smart contract. For now, it is just
a number stored onchain. So it is either unfinished functionality or it
is obsolete functionality.

Auditors also suppose this value may be used in dApp or periphery
contracts. Therefore the issue is marked as Low since it needs
additional information from the team.

Fee is not used

low-1 Verified

Add fee functionality usage, OR remove unused functionality OR
verify that the fee storage is required for the dApp/other contracts.

Post-audit:

Everstake team has verified that fee is necessary for the Dapp and
customers.

Recommendation:

PoolB2Bl.sol: _safeEthSend()

Internal function _safeEthSend() is not used anywhere in the
contract. It is a sign of either unfinished or obsolete functionality.

Unused function

low-2 Resolved

Consider removing of the unused function

Post-audit:

Function was removed.

Recommendation:

Everstake Smart Contact Audit

11security@blaize.tech

PoolB2Bl.sol: _depositContact, _withdrawAuthority

These variables get value just once during the deployment of the
contract. Therefore it is recommended to mark them as immutable.

Variables can be defined as immutable

Set variables as immutable.

Recommendation:

lowest-1 Resolved

PoolB2Bl.sol: _stake()

The function contains a check if the value equals 0. Check is
redundant, since _stake() is called in a single place in the stake()
function, and the general stake function already contains a check
for value to be greater than BEACON_AMOUNT.

Unnecessary check

Remove redundant check.

Recommendation:

lowest-2 Resolved

By documentation, Everstake devops team prepares production-
ready workers for validators and prepares all necessary
credentials (pubkey, signatures, withdrawal params, etc.). Also, the
team puts prepared validators info into the contract (via
setPendingValidators()). By then, all validators are prepared and
dedicated for the user (including multisigs setup). After that, the
user may use stake() function from his wallet and provide a deposit
to the Beacon contract

Matching of the staker with the prepared validator

PoolB2Bl.sol: _stake()

lowest-3 Verified

Everstake Smart Contact Audit

12security@blaize.tech

using the Everstake set of validators. Though, the issue here is that
these 2 events (validators preparation and stake by user) are not
atomic (which is logical) and are not crosschecked. So, there is no
guarantee that the user, through the stake() function, will receive
his dedicated set of validators. So we can imagine a scenario of 2
users which will provide a stake, not in the order of how validators
are added. So it is recommended to provide validation during the
stake so that the user receives his dedicated validator.

The issue is marked as info as it relates to the business logic. Also,
by the time of the audit, the exact procedure of connection staker
to his dedicated validators is unknown.

Provide additional checks that the user (staker) will use his
dedicated set of validators during the stake() (check by the wallet
address or signature check, for example) OR verify that there will be
no conflicts from this point of view and Everstake will handle
queuing of users through the dApp.

From client:

Everstake team verified that the issue is not actual, as the order of
validators is not relevant.

Recommendation:

No information about the contract, functions, storage variables,
and other entities. There is minimal commentary. It is
recommended to describe all entities with NatSpec comments
according to the Solidity style guide in order to ensure clear and
user-friendly usage.

Lack of documentation.

Use NatSpec commentary for all the entities.

Post-audit: Function descriptions were added.

Recommendation:

lowest-4 Resolved

Everstake Smart Contact Audit

13security@blaize.tech

p̀ragma solidity ^0.8.0; ̀is used in P̀oolB2B.̀ The contract should be
deployed with the same compiler version and options with which it
has been most tested. Locking the pragma version helps ensure
that the contract is not accidentally deployed using a different
version. In addition, older versions may contain bugs and
vulnerabilities and be less optimized in terms of gas. It is
recommended to use the latest version of Solidity and specify the
exact pragma.

Inaccurate version pragma.

Specify the latest version of Solidity in the pragma statement.

Post-audit:

‘pragma solidity 0.8.19’ is used now.

Recommendation:

lowest-5 Resolved

PoolB2Bl.sol: setPendingValidators(), line 172.

There is the comparison to f̀alse.̀ Boolean constants can be used
directly and do not need to be compared to t̀rue ̀or f̀alse.̀

Boolean equality.

Remove the equality to f̀alse.̀

Recommendation:

lowest-6 Resolved

Everstake Smart Contact Audit

14security@blaize.tech

PoolB2Bl.sol: _poolBalance, _poolFee, _withdrawAuthority,
_depositContract, _governor.

The contract contains storage variables with private visibility.
Usually, private visibility for state variables is worth using in case of
inheritance or insufficiency of the default public getter (e.g., in case
of a structure including an array) or special rules for such a
function, including conversions, requirements, and the like.
Whereas getters for listed variables do not apply to these cases.
Such use complicates the code and reduces readability.

Unnecessary private visibility.

Use public visibility for these variables.

Recommendation:

lowest-7 Resolved

PoolB2B.sol: _removePendingValidator(), setPendingValidators().

When the validator is removed, info about him in mapping
_̀validatorsRegistry ̀is not removed. Thus, the value for a removed
validator is stayed as true. This might be confusing for the Dapp in
case protocol validates if the validator is registered by using this
mapping. Also, once the validator is removed, it is impossible to
add him to the array of pending validators again due to validation
in setPendingValidators(), line 172.

Removed validator can’t be added again.

Delete a value from mapping _̀validatorsRegistry ̀for the removed
validator OR verify that the value should not be deleted, and once
the validator is removed, it can’t be added to pending validators
again.

Post-audit: Removed validators can be added again now.

Recommendation:

lowest-8 Resolved

Everstake Smart Contact Audit

15security@blaize.tech

Confusing naming.

lowest-9 Resolved

PoolB2B.sol
 The mapping _̀validatorsRegistry ̀is used as a validator usage

mark, not as a registry. (See Info-8 for details).

Recommendation.

Rename it according to usage

 The function d̀eposit() ̀has the private visibility, but named
without an underscore ‘_’, unlike other private functions. This is
misleading.

Recommendation.

Agree on the naming by adding an underscore.

Lack of getters.

lowest-10 Resolved

PoolB2B.sol: BEACON_AMOUNT, _validatorsRegistry,
FEE_DENOMINATOR, ETH1_ADDRESS_WITHDRAWAL_PREFIX,
_pendingValidators.

There are no getters for the listed state variables and constants.
The lack of getters makes it difficult to keep track of the storage
state and debug issues that arise, as well as reduces usability. In
case of _̀pendingValidators,̀ there is only getter for a p̀ubkey,̀ but
not for the others. Note that the default public getter does not
include dynamically-sized byte arrays, so it is worth creating it
manually. There is no point in making these values private, as input
parameters can be viewed by transaction, and constant values
can be viewed in the block explorer after verification or by
decompiling byte-code otherwise.

Recommendation.

Add getters for the variables.

Post-audit.

Everstake team has rewritten the algorithm, so that stack is used
now. Thus it is no longer needed to iterate through all validators.

Everstake Smart Contact Audit

16security@blaize.tech

The issue about out-of-gas transaction when removing the first
pending validator

lowest-11 Resolved

(1). It is also worth noting that if there are about 1050 pending
validators in the array, the transaction would not be feasible at all,
as it will run out of gas. Due to the swapping of a lot of elements on
lines 189–191.

Everstake Smart Contact Audit

17security@blaize.tech

Optimization suggestion for Everstake and out-of-gas transaction
issue

lowest-12 Resolved

Currently, when s̀etPendingValidators() ̀is called, an element with
three dynamic arrays (b̀ytes)̀ is written to the _̀pendingValidators ̀
array. The user then, when s̀take() ̀is called, copies such an element
to memory at his own expense (D̀epositData memory validator ̀on
line 92), removes it from the p̀endingValidators ̀array
(_̀pendingValidators.pop(); ̀on line 193), and then writes the public
key back into the storage (_̀validators.push(pubkey); ̀on line 133). It is
worth noting that if the queue of pending validators contains not a
couple of elements, but several dozen or more, the cost increases
noticeably due to swaps (line 190).

Possible minimum optimization

In addition to what is described above, the user has to do this
swap (lines 189–191) multiple times, because instead of doing it
once, the first one (_̀removePendingValidator(0); ̀on line 93) is
deleted multiple times.

 It is worth doing this once, starting the swap with the last pending
validator for the current stake when deleting.

 Although this will reduce consumption, it still does not solve the
issue (1) of the transaction going over the gas limit.

More advanced optimization (recommended)

Instead of all this, it is worth

 replace the two arrays with one mapping
 add two numbers – the index of the first pending validator and

the number of pending validators
 add a numeric status to the validator data, indicating that it is

in the queue, used when staking, or excluded using
r̀emovePendingValidator();

Everstake Smart Contact Audit

18security@blaize.tech

 (optionally) if arrays of used and pending validators are to be
obtained, getters can be added, which will collect them by the
mentioned mapping since v̀iew ̀methods do not require a gas
payment.

 Thus, there will be no need to remove validators from the storage in
_̀removePendingValidator() ̀and write the dynamic array b̀ytes ̀(public
key) again in d̀eposit().̀ Gas consumption will be reduced, especially in
cases with a lot of pending validators. It can be considered that issue
(1) will be solved. At the same time, more historical data will be left.

 That is, it is worth replacing the two arrays

 `bytes[] private _validators;` and

 `DepositData[] private _pendingValidators;`

with the one mapping

 // A validator index -> Validator data.

 `mapping(uint256 => ValidatorData) public validators;`,

where V̀alidatorData ̀is an augmented D̀epositData:

 enum ValidatorStatus {

 	 NonExistent,

 	 Pending, 	// Added with `setPendingValidators()`.

 	 Staked, 	// Used ("deleted") at `stake()`.

 	 Removed 	// Excluded ("deleted") with
`removePendingValidator()`.

 }

 struct ValidatorData {

 	ValidatorStatus status;

 	bytes pubkey;

 	bytes withdrawal_credentials;

 	bytes signature;

 	bytes32 deposit_data_root;

 }.

Everstake Smart Contact Audit

19security@blaize.tech

 At the same time, store two numbers: the index of the first pending
validator in the v̀alidators ̀mapping and the number of pending
validators.

 Use the number to check that there are enough validators for s̀take() ̀
and subtract from it in the same call. And also use it to add new ones.

 Start "deleting" (changing state to V̀alidatorStatus.Staked)̀ from the
index of the first pending validator, increasing the index to the new first
pending validator.

 If there are deleted validators after the index of the first pending
validator due to calls to r̀emovePendingValidator(),̀ then they have
.̀status == ValidatorStatus.Removed ̀and the index is further increased,
skipping them. And there will still be enough validators, because the
number is pre-checked.

 Also, it is cheaper to use the ǹonReentrant ̀modifier (OpenZeppelin) for
s̀take() ̀than to copy each validator into memory (D̀epositData memory
validator̀, line 92) before deleting. That is, use V̀alidatorData storage
validator ̀with ǹonReentrant.

 This reduces the required computation for s̀take() ̀and
r̀emovePendingValidator(),̀ and it can also be considered that it solves
the cost and gas limit issue of swapping and deleting pending
validators. Leaves more historical data at the same time.

 If you want to get arrays of used (“staked”) and pending validators,
getters can be made which return the needed arrays by mapping. For
used validators before the index of the first pending validator, and for
pending validators after. Having regard to V̀alidatorStatus.Staked ̀and
V̀alidatorStatus.Pending ̀respectively.

Everstake Smart Contact Audit

20security@blaize.tech

Post-audit.

The array was correctly rewritten using index and overwrite instead of
pushing in the similar way as suggested. Although, a mapping was not
used instead of an array. However, this is not considered a
disadvantage, as it depends on the specifics of the task and individual
preferences of the developer. In addition, a library was written to
handle such an array in a convenient way.

Everstake Smart Contact Audit

21security@blaize.tech

Unnecessary requirements.

lowest-13 Resolved

PoolB2B.sol
 _̀stake().̀On line 106, an array of validators is required to contain

pending validators (r̀equire(isPresented, 'Pending validator');)̀.
However, before this on line 101, the requirement uses the
.̀length() ̀method, which takes into account the number of active
(pending) validators, eliminating such a possibility. Thus, it is
possible not to take the value of ìsPresented ̀locally and to
require it to be true in this case.

Recommendation. Do not take the value of ìsPresented ̀locally and
not require it to be true in this case

 _̀deposit().

Due to what is described in point 1, the requirement on line 142
(_̀knownValidators[validatorHash] == ValidatorStatus.Pending)̀ also
is unreachable, since any validator returned on line 105 will have
the pending status.

Recommendation. Remove it

 _̀removePendingValidator().

On line 224 it is also required _̀knownValidators[validatorHash] ==
ValidatorStatus.Pending,̀ but before that, on line 220 it is checked a
requirement similar to the one in point 1 (line 101). That is, it also turns
out to be unreachable because validators with a different status
are cut off using the .̀length() ̀method.

Recommendation. Remove it.

Everstake Smart Contact Audit

22security@blaize.tech

Unnecessary gas consumptions.

lowest-14 Resolved

ValidatorList.sol: r̀emove().

There is passed an array of deposit data in s̀etPendingValidators(),̀
but they are added to the list one at a time, and the index is
updated for each. It is recommended to add method
àddBatch(List storage set, DepositData[] calldata validators[]) ̀to
V̀alidatorList ̀to change _̀activeElementIndex ̀once in
s̀etPendingValidators(),̀ adding the passed validators at a time.
How many will need to be added via .̀push() ̀will also only be
checked once.

Recommendation.

Optimize this by adding the method.

Post-audit.

Tested that there is little difference due to additional indexes
during array iterating.

Everstake Smart Contact Audit

23security@blaize.tech

Re-entrancy

Arithmetic Over/Under Flows

Access Management Hierarchy

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Delegatecall Unexpected Ether

Hidden Malicious Code

Default Public Visibility

External Contract Referencing

Entropy Illusion (Lack of Randomness)

Unchecked CALL Return Values

Short Address/ Parameter Attack

Race Conditions / Front Running

Signatures Replay

Tx.Origin Authentication

Pool Asset Security (backdoors in the
underlying ERC-20)

General Denial Of Service (DOS)

Floating Points and Precision

Uninitialized Storage Pointers

PoolB2B.sol

ValidatorList.sol

24security@blaize.tech

Code coverage and test results
for all files, prepared by
Everstake team

Contract: Pool_B2B
success: d̀eposit ̀(single user, stake completely used) (3646ms)
success: d̀eposit ̀(single user with 2 deposits
amount, stake completely used) (6406ms)
success: d̀eposit ̀(multi user, stake completely used) (6735ms)
success: r̀emove pending validator ̀(4438ms)
fail: r̀emove pending validator not governor call ̀
(2459ms)
fail: òutworld deposit`
fail: s̀ame validator in batch ̀(2153ms)
fail: ẁrong deposit amount, GT than BN_BEACON`̀
fail: ẁrong deposit amount, LT than BN_BEACON`
fail: s̀et pending validators ̀(not governor caller)
fail: s̀take ̀(not enough pending validators) (180ms)
fail: m̀ulti stake ̀(not enough pending validators) (3635ms)
fail: s̀et pending validators ̀(wrong withdraw creds)
fail: d̀eposit ̀(wrong deposit creds) (2426ms)
fail: àlredy added pending validator ̀(same validator)
(2302ms)
fail: àlredy added validator ̀(same validator) (3603ms)
fail: ẁrong pubkey len ̀(less than)
fail: ẁrong pubkey len ̀(gt than)
fail: ẁrong sigrature len ̀(less than)
fail: ẁrong sigrature len ̀(gt than)

20 passing (3m)

Everstake Smart Contact Audit

Everstake Smart Contact Audit

25security@blaize.tech

Test

coverage

results
TokenDeal team

FILE

OperatorFilterer.sol

Holoself.sol

40

78.95

% STMTS

30

45.24

% BRANCH

57.14

53.85

% FUNCS

26security@blaize.tech

Code coverage and test results
for all files, prepared by blaize
security team

Initializes (526ms)

Sets a pending validator (42ms)
Reverts when setting if wrong withdrawal credentials
Reverts when setting if a wrong length of a public
key
Reverts when setting if a wrong length of a signature
Reverts when setting if a validator has already been added
Prevents non-governors from setting

Stakes (50ms)
Stakes by two users [skip-on-coverage] (74ms)
Reverts when staking if a beacon amount is not a
multiple of 32 Ether
Reverts when staking if a zero beacon amount
Reverts when staking if not enough pending validators

Removes the first pending validator
Removes the first pending validator when there are two
Removes the second pending validator when there are three

[skip-on-coverage] (41ms)
Removes the last pending validator when there are three

[skip-on-coverage] (41ms)
Reverts when removing if an out-of-range index
Prevents non-governors from removing

Sets the governor's address
Prevents non-governors from setting the governor's address
Sets the pool fee
Returns f̀alse ̀and does not set a new pool fee if the passed

value exceeds 100%

Prevents non-governors from setting the pool fee

Everstake Smart Contact Audit

PoolB2B

27security@blaize.tech

Gets staker's balance (43ms)
Gets the pool balance (43ms)
Gets the pool fee
Gets an address of the withdrawal authority
Gets an address of the deposit contract
Gets the number of validators (45ms)
Gets validator's public key (46ms)
Reverts when getting validator's public key if an
out-of-range index
Gets the number of pending validators
Gets a public key of a pending validator
Reverts when getting a public key of a pending
validator if an out-of-range index
Gets an address of the governor

35 passing (7s)

Everstake Smart Contact Audit

Everstake Smart Contact Audit

28security@blaize.tech

Test

coverage

results
blaize security team

FILE

PoolB2B.sol

All files

94

94

% STMTS

91.18

91.18

% BRANCH

95.45

95.45

% FUNCS

The team also performed additional round of fork testing (with the
ETH stake contract) and manual testing to ensure the correctness
of logic.

Everstake Smart Contact Audit

29security@blaize.tech

Disclaimer
The information presented in this report is an intellectual property
of the customer including all presented documentation, code
databases, labels, titles, ways of usage as well as the information
about potential vulnerabilities and methods of their exploitation.
This audit report does not give any warranties on the absolute
security of the code. Blaize.Security is not responsible for how you
use this product and does not constitute any investment advice.

Blaize.Security does not provide any warranty that the working
product will be compatible with any software, system, protocol or
service and operate without interruption. We do not claim the
investigated product is able to meet your or anyone else
requirements and be fully secure, complete, accurate and free of
any errors and code inconsistency.

We are not responsible for all subsequent changes, deletions and
relocations of the code within the contracts that are the subjects
of this report.

You should perceive Blaize.Security as a tool that helps to
investigate and detect the weaknesses and vulnerable parts that
may accelerate the technology improvements and faster error
elimination.

