
SMART CONTRACT AUDIT

TokenDeal

February 24th, 2023 / v.	1.0

TokenDeal Smart Contact Audit

1security@blaize.tech

Table of

 Contents
Audit rating 2

Technical summary 3

The graph of vulnerabilities distribution 4

Severity Definition 5

Auditing strategy and Techniques applied \ Procedure 6

Executive summary 7

Complete​ Analysis 11

Code coverage and test results for all files (TokenDeal) 18

Code coverage and test results for all files (Blaize Security) 21

Test coverage results (Blaize Security) 22

Disclaimer 23

Test coverage results (TokenDeal) 20

Protocol overview 9

TokenDeal Smart Contact Audit

2security@blaize.tech

TokenDeal contract’s
source code was
taken from the
archive provided by
the TokenDeal team.

SCORE 9.9 /10

audit

 rating

The scope of the project is TokenDeal set of contracts during
1st audit iteration:

TokenDeal.sol1/

Code delivered as archive

Initial code:

Archive SHA256:
b4e556481c6af5f39e55946534b3fbc7eaac26f82111e51851c7ed7d85
608693

TokenDeal.sol SHA256:
c7148ada58ea459a0d62f420960b6866c09e128d5add7d22a1ef794
6bb7634c5

Final code:

Archive SHA256:
4b23675a3c17d0ce21d5cccf070534c186780f330944e4e0703cb334
3d14702e

TokenDeal.sol SHA256:
ede40bf4f0a6ef8e1120f42cdb4048f22e6816f84faac96639834f3cb
b986c15

TokenDeal Smart Contact Audit

3security@blaize.tech

Technical

 summary

Testable code

In this report, we consider the security of the contracts for
TokenDeal protocol. Our task is to find and describe security issues
in the smart contracts of the platform. This report presents the
findings of the security audit of TokenDeal smart contracts
conducted between February 23rd, 2023 - February 24th, 2023

The testable code is 100%, which above the
industry standard of 95%.

The scope of the audit includes the unit test coverage, that bases
on the smart contracts code, documentation and requirements
presented by the TokenDeal team. Coverage is calculated based
on the set of Hardhat framework tests and scripts from additional
testing strategies. Though, in order to ensure a security of the
contract Blaize.Security team recommends the TokenDeal team put
in place a bug bounty program to encourage further and active
analysis of the smart contracts.

INDUSTRY STANDARD

your average

100%75%50%25%0%

TokenDeal Smart Contact Audit

4 security@blaize.tech

Critical

High

Medium

Low

Lowest

0

0

1

3

8

FOUND

0

0

1

3

8

FIXED/VERIFIED

The table below shows the number of found issues
and their severity. A total of 12 problems were
found. 12 issues were fixed or verified by the
TokenDeal team.

5%

15%

80%

The graph of
vulnerabilities
distribution:

high

medium

lowest

low

TokenDeal Smart Contact Audit

5security@blaize.tech

Severity Definition

A system contains several issues ranked as very
serious
 and dangerous for users and the secure 
work of the
 system. Needs immediate 
improvements and further
 checking.

Critical

A system contains a couple of serious issues, which 
lead to unreliable work of the system and migh 
cause
 a huge information or financial leak. Needs
immediate improvements and further checking.

High

A system contains issues which may lead to
mediumfinancial loss or users’ private information
leak. Needs
 immediate improvements and further
checking.

Medium

A system contains several risks ranked as relatively 
small with the low impact on the users’ information 
and financial security. Needs improvements.

Low

A system does not contain any issue critical to the 
secure work of the system, yet is relevant for best

Lowest

TokenDeal Smart Contact Audit

6security@blaize.tech

Auditing strategy and
Techniques applied \ Procedure

In our report we checked the contract with the following parameters:

Procedure

Whether the contract is secure;

Whether the contract corresponds to the documentation;

Whether the contract meets best practices in efficient use of gas,
code readability;

We have scanned this smart contract for commonly known and
more specific vulnerabilities:

Unsafe type inference;

Timestamp Dependence;

Reentrancy;

Implicit visibility level;

Gas Limit and Loops;

Transaction-Ordering
Dependence;

Unchecked external call -
Unchecked math;

DoS with Block Gas Limit;

DoS with (unexpected) Throw;

Byte array vulnerabilities;

Malicious libraries;

Style guide violation;

ERC20 API violation;

Uninitialized state/storage/ 
local variables;

Compile version not fixed.

Automated analysis:

Scanning contract by several public available automated analysis
tools such as Mythril, Solhint, Slither and Smartdec. Manual
verification of all the issues found with tools.

Manual audit:

Manual analysis of smart contracts for security vulnerabilities.
Checking smart contract logic and comparing it with the one
described in the documentation.

TokenDeal Smart Contact Audit

7security@blaize.tech

Executive

 summary

 The audited set of contracts represents the protocol for the NFT
sale. It handles funds collection, NFT minting, and distribution of
funds between the manager and the owner.

 The auditor's team checked the contract against common
vulnerabilities and its own security checklist, checked the funds
flow, user operations, correct roles assignment, and the overall
business logic (in search of loopholes, backdoors, and potential
disruptions of the contract workflow).

 Also, the team performed several testing rounds against the
whole NFT sale process.

 The audit found no critical issues. But the team has prepared a
description and recommendation for the row of low-risk issues,
including best practices violations, accuracy loss, and several
questions connected to the business logic of the protocol. There
are several unclear edgecases for the refund operations, NFT
minting, and lock time for the contract. Though, TokenDeal team
resolved or verified all the issues.

 Also, the Blaize Security team needs to notice that the contract
depends on 3rd party contract - the actual NFT which will be sold.
For now, the NFT contract is not written; therefore, there is no way
to check the whole process of future NFT minting. Nevertheless, the
DealToken team prepared the interface for the future NFT,
compatible with the sale logic.

 Contracts are well documented with natspec comments and
have good gas optimization. Despite current recommendations for
additional checks for the lock change and token address during
the minting, the overall security is high enough to comply the
security standard.

TokenDeal Smart Contact Audit

8security@blaize.tech

Security

Gas usage and logic optimization

Code quality

Test coverage**

Total

9.8

9.8

9.9

10

9.9

**Contract has a native coverage, prepared by TokenDeal team,
though, Blaize Security has prepared their own set of unit tests and
additional scenarios to cover the whole code. The mark shows the
final testable code

RATING

TokenDeal Smart Contact Audit

9security@blaize.tech

Protocol overview

TokenDeal is a protocol for NFT sales. The contract represents the
main sale phases: funds collection during purchase, purchased NFT
mint after the sale, and collected funds withdrawal.

1. Funds collection

The sale starts immediately after the contract deployment. The lock
time parameter regulates its duration: until the contract is locked, it
allows NFT purchasing.

* the manager can prolong lock time

* once lock time is over, the contract stops receiving money from
users

* there is no ability to get ETH directly by receiving function. Users are
obeyed to use purchase() function. Users will lose all funds sent
directly.

* user can refund ETH after the purchase

* contract saves each user who purchased NFTs

* there is a limit for NFTs to be purchased (set in the constructor)

* NFT price is set in the constructor

2. NFT mint

After the sale is over (after the lock timestamp), the manager
completes it. completeSale() function goes through all saved users
and mints NFTs until enough gas exists.

3. Funds withdrawal

After all, NFTs are minted, owner withdraws collected funds.

* manager gets a commission by FEE percent (10% by current setting)

* all funds collected (contract balance) go to the owner

4. Global refund

Function allowRefund() stops any current process (sale, mint, or
withdrawal) and turns on "refund-only" mode.

* the only allowed operation is refund by the user

* there is no difference if some NFTs are minter, or neither NFTs are
minted

TokenDeal Smart Contact Audit

10info@blaze.tech

T o k e n D e a l . N F T s a l e f l o w

Purchase allowed

Refund possible

Initial lock time

New lock time

initial lock
time

updated
lock

lock finished

Funds withdrawal
by owner

Sale completion by
manager

C
o

n
tr

a
c

t
d

e
p

lo
y

e
d

M
a

n
a

g
e

r
c

h
a

n
g

e
d

 lo
c

k
ti

m
e

S
a

le
 f

in
is

h
e

d

a
u

to
m

a
ti

c
a

lly

A
ll

N
FT

s
m

in
te

d

A
ll

fu
n

d
s

w
it

h
d

ra
w

n

TokenDeal Smart Contact Audit

11security@blaize.tech

Complete​ Analysis

TokenDeal.sol: _calculateFee()

Function violates mul-div pattern: in order to calculate the fraction,
you need to multiply by the percent first and divide by the
accuracy divisor after. The issue is classified as Medium since it
violates standard Solidity rules against vulnerabilities, leading to a
loss of accuracy and important values.

Accuracy loss

Change operations order to: value * FEE / 100000

Recommendation:

medium-1 Resolved

TokenDeal.sol: changeLockTimestamp()

The contract has limitations against setting timestamps in the
past, but there are no limitations for setting timestamps in the
future. It creates a wide possibility for a human mistake with an
incorrect value for the new lock timestamp. Providing timestamps
far in the future and creating a deadlock for the funds is possible,
so it will be impossible to claim funds. Also it is impossible to re-set
the timestamp into the past. The issue is classified as Low, because
the function can be called only by the owner. Though it creates a
risk for funds block, it is recommended to take care of it.

General recommendation is a maximum step for the timelock
update and add the check into the function,against that step (e.g.
newTimestamp - lockTimestamp <= MAX_TIMESTAMP_STEP).

Max lock timestamp step should be introduced

low-1 Verified

Consider adding the step for timestamp change.

Recommendation:

TokenDeal team will not add the check to keep gas consumption
low and verified that uint32 for timestamp will handle this case.
Though auditors recommend to provide additional measures on
the dApp part for prevention human error with timestamp.

Post-audit:

TokenDeal Smart Contact Audit

12security@blaize.tech

Add condition to add user to the userAddress list only if he
purchases for the first time OR add limitation to the purchase() calls
for the user.

Recommendation:

Verified as false-positive. Auditors double confirmed with
appropriate tests.

Post-audit:

TokenDeal.sol: purchase()

The function does not distinguish if the user is already added to the
list. Since there are no restrictions for users to participate in the
sale several times, any user can call purchase() function for several
times. Therefore, the user will be added to the userAddress list
several times. This will influence gas spendings during the
completeSale() call.

Same user can be added to the userAddress list twice

low-2 Verified

Consider scenario: 
- finish sale with all NFTs sold (nftLimit == nftSold)

- complete the sale (mint all NFTs)

- allow refund (call allowRefund function)

After this action, the only possible functionality for the contract is
to provide a refund for users. Though, at this point, the owner is
allowed to withdraw all funds (with the fee paid to the manager).

The issue is marked as Low, since it requires actions from admins.
But to verify the behavior's correctness and exclude dishonest
owner/manager, auditors added issue to the report.

 Refund may not be possible in case if all NFTs are minted

low-3 Verified

Verify that owner can withdraw funds in case of refund-only mode
after the sale completion OR restrict such behavior.

Recommendation:

Verified by TokenDeal team as expected behavior.

Post-audit:

TokenDeal Smart Contact Audit

13security@blaize.tech

TokenDeal.sol: TOKEN_DEAL_MANAGER

Constant contains the address of the operator role (token deal
manager). However, it has hardcoded value for the testnet, which
will mostly be changed to the mainnet one. The comments around
the constant partly confirm this. So, it will lead to contract code
changes after the audit, which may require additional checks.

Therefore it is recommended to use the immutable variable for the
address set up in the constructor. Also, having the necessary
manager addresses in the deployment scripts is recommended.

Token deal manager constant

Change the constant address to the immutable variable and set it
up in the constructor. Add the necessary address to the
deployment script.

OR verify that the address will be the same for the mainnet and
change the comment to indicate that.

Recommendation:

TokenDeal team is acknowledged and decided to leave
hardcoded address. The team will update it to mainnet one before
the release. Contracts will be deployed by users from the frontend.

So the team left hardcoded address to avoid possible attempts of
replacing the address with the wrong one. Auditors recommend to
verify the code before the deployment with the security team,
since there will be changes in the code.

Post-audit:

lowest-1 Verified

TokenDeal.sol: nftPrice, nftLimit

These variables get value just once during the deployment of the
contract. Therefore it is recommended to mark them as immutable.

Variables may be declared as immutable

lowest-2 Resolved

Set variables as immutable.

Recommendation:

TokenDeal Smart Contact Audit

14security@blaize.tech

TokenDeal.sol: completeSale()

The function gets a token address as a parameter. This token is the
one which will be minted for the sale participants. Since only the
admin can call the function, and since the function is designed to
be called several times with potentially different gas, the admin
can use different tokens for different users. Or the admin can use
another token at all. Therefore, such an approach can be classified
as a controllable backdoor in the sale logic, which can be
disturbing for users.

Mark the token address transparently and set it just once: either in
the constructor (if possible) or in the separate setter with the event
emitted.

Potential backdoor with token address

 Set a token address for NFT minting just once.

Recommendation:

By the TokenDeal team, the owner does not know the address of
the token when the contract is deployed. Separate method will
cost gas, which is unacceptable in TokenDeal case. TokenDeal
team verified, that since only TokenDealManager can call this
method, a backdoor is unlikely. Nevertheless, auditors recommend
to provide additional layer of checks before the mint start.

Post-audit:

lowest-3 Verified

Provide constant.

Recommendation:

TokenDeal.sol: _calculateFee()

The function contains the accuracy divisor 100000 set as a “magic
number”. It is recommended to provide an appropriate constant for
better code readability.

Magic number used

lowest-4 Resolved

TokenDeal Smart Contact Audit

15security@blaize.tech

TokenDeal.sol: purchase()

The user can purchase 0 tokens, which will be a legal transaction
that will add the user to the list. Despite that it is unprofitable for
the user (for tx fees), it allows the general DoS attack to abuse the
storage in the userAddress list (since the user will be added to the
list). And that will create problems for the sale completion.

The issue is marked as Info, since the completion function has gas
control mechanics.

User can purchase 0 tokens and cause DoS

Restrict the purchase of 0 amount.

Recommendation:

lowest-5 Resolved

TokenDeal.sol: withdrawOwnerFunds()

txBalance is meant to be a minting tx fee refund for the manager.
This balance and the fee collected from the sale create full
compensation for him. Though the function includes txBalance into
the manager fee calculation. So the current formula is

manager fee = full amount * 10% + tx balance

rather than

manager fee = (full amount - tx balance) * 10% + tx balance

The issue is marked as info as it is related to the business logic and
correctness of fee calculation, so it needs verification from the
TokenDeal team.

Balance for tx refund is included twice for the manager

lowest-6 Resolved

Verify the correctness of the chosen fee calculator formula.

Recommendation:

TokenDeal Smart Contact Audit

16security@blaize.tech

TokenDeal.sol: completeSale()

j counter is defined within the cycle, which may lead to incorrect
initialization and memory re-usage. Consider defining j out of the
cycle and provide a strict 0 assignment.

The issue is marked as info, since there is extremely low chance of
its reproducing. Though there is a possibility of incorrect memory
distribution, which may lead to the memory not being cleaned for j
before the next cycle turn.

Provide initialization of the variable out of the cycle

lowest-8 Resolved

Consider j definition out of the cycle.

Recommendation:

TokenDeal.sol: completeSale()

Function mints NFTs one by one, which is not gas efficient. It is
recommended to consider batch mint functionality for the target
NFT, since ERC721 supports it.

Batch mint recommended

Consider batch minting functionality for the NFT.

Recommendation:

TokenDeal team verified that 1 by 1 minting complies with the
protocol needs.

Post-audit:

lowest-7 Verified

TokenDeal Smart Contact Audit

17security@blaize.tech

Re-entrancy

Arithmetic Over/Under Flows

Access Management Hierarchy

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Delegatecall Unexpected Ether

Hidden Malicious Code

Default Public Visibility

External Contract Referencing

Entropy Illusion (Lack of Randomness)

Unchecked CALL Return Values

Short Address/ Parameter Attack

Race Conditions / Front Running

Signatures Replay

Tx.Origin Authentication

Pool Asset Security (backdoors in the
underlying ERC-20)

General Denial Of Service (DOS)

Floating Points and Precision

Uninitialized Storage Pointers

TokenDeal.sol

18security@blaize.tech

Code coverage and test results
for all files, prepared by
TokenDeal team

TokenDeal::AllowRefund

Success: purchase 2 tokens by user1
Success: purchase 1 more token by user1
Fail: purchase 2 tokens with wrong price by user

Fail: activate allowRefund by not manager

1677151548

Success: activate allowRefund by manager
Fail: try to purchase after allowRefund was activated

0.009999999999934464

Success: withdraw by user after allowRefund was activated
Fail: try to compileSale after allowRefund was activated
Fail: try to withdrawOwnerFunds after allowRefund was activated

 Error: value out-of-bounds

Fail: try to changeLockTimestamp after allowRefund was activated

(value out-of-bounds)
Fail: try to changeLockTimestamp after allowRefund was activated

(TimeMustBeHigherThanPrevious)
Fail: check getAvailableAmount
Fail: try to purchase after allowRefund was activated

0.019999999999868928

Success: withdraw by user after allowRefund was activated
TokenDeal

Gas Used (deploy TokenDeal): 2442022

Success: purchase 2 tokens by user1
Gas Used purchase 1: 47684
Success: purchase 1 more token by user1
Fail: purchase 2 tokens with wrong price by user
Fail: purchase more than limit tokens by user
Success: purchase all tokens by users (41ms)

TokenDeal Smart Contact Audit

19security@blaize.tech

Fail: withdraw more than available tokens by user

 Gas Used withdraw 1: 50236

0.009999999999934464

Success: withdraw locked tokens by user
Success: purchase token by user
Gas Used withdraw 1: 50236

0.009999999999934464

Success: withdraw locked tokens by user

Fail: change to less time
Fail: change time by not tokenDealManager
Success: change time by tokenDealManager

Fail: completeSale by owner before expired time
Fail: withdraw by owner before expired time and compiled sale

Success: get user addresses length
Success: get available amount after complete sale

30 passing (557ms)

TokenDeal Smart Contact Audit

TokenDeal Smart Contact Audit

20security@blaize.tech

FILE

TokenDeal.sol 57.89

% STMTS

58.7

% BRANCH

91.67

% FUNCS

Test

coverage

results
TokenDeal team

21security@blaize.tech

Code coverage and test results
for all files, prepared by blaize
security team

TokenDeal

can purchase NFT
cannot purchase NFT after lock time ends
cannot purchase nft when msg.value is not sufficient [1 NFT]
cannot purchase nft when msg.value is not
sufficient [3 NFT]
cannot purchase nft after all nfts are sold

user can withdrawFunds
user can withdrawFunds fund for 1 out of 2 NFT
user cannot withdrawFunds more than he has paid
user cannot withdrawFunds zero amount
user cannot withdrawFunds after lock

only manager can call allowRefund
allowRefund block ability to buy nft
allowRefund doesn't block ability to withdrawFunds

only manager can changeLockTimestamp to a
new value
lock timestamp cannot be changed if it is expired
new lock timestamp cannot be before previous lock timestamp

only manager can completeSale
cannot completeSale while time lock is not expired
completeSale (58ms)
completeSale in two TX

only owner can call withdrawOwnerFunds
cannot withdraw funds when there is no funds
cannot withdraw funds when nft are not minted
withdrawOwnerFunds

24 passing (521ms)

TokenDeal Smart Contact Audit

TokenDeal Smart Contact Audit

22security@blaize.tech

FILE

TokenDeal.sol 100

% STMTS

86.96

% BRANCH

100

% FUNCS

Test

coverage

results
blaize security team

** Additionally Blaize Security team provided an exploratory testing
of the edgecases for the sale period (sale of the whole limit, several
purchases by the same user, unexpected end of sale, purchases of
different numbers of NFTs) and for the completeSale() function inm
particular.

TokenDeal Smart Contact Audit

23security@blaize.tech

Disclaimer
The information presented in this report is an intellectual property
of the customer including all presented documentation, code
databases, labels, titles, ways of usage as well as the information
about potential vulnerabilities and methods of their exploitation.
This audit report does not give any warranties on the absolute
security of the code. Blaize.Security is not responsible for how you
use this product and does not constitute any investment advice.

Blaize.Security does not provide any warranty that the working
product will be compatible with any software, system, protocol or
service and operate without interruption. We do not claim the
investigated product is able to meet your or anyone else
requirements and be fully secure, complete, accurate and free of
any errors and code inconsistency.

We are not responsible for all subsequent changes, deletions and
relocations of the code within the contracts that are the subjects
of this report.

You should perceive Blaize.Security as a tool which helps to
investigate and detect the weaknesses and vulnerable parts that
may accelerate the technology improvements and faster error
elimination.

