Blaize.Security

March 16th, 2023 / V. 1.0

2L synthex

SYNTHEX
SMART CONTRACT AUDIT

>\ Q

Blaize.Security Synthex Smart Contact Audit

TABLE OF
CONTENTS

Audit Rating 2
Technical Summary 3
The Graph of Vulnerabilities Distribution 4L
Severity Definition 5
Auditing strategy and Techniques applied/Procedure 6
Executive Summary 7
Protocol Overview 8
Complete Analysis L1
Code Coverage and Test Results for All Files (Synthex) 34
Test Coverage Results (Synthex) 37
Code Coverage and Test Results for All Files (Blaize Security) 38
Test Coverage Results (Blaize Security) 43
Disclaimer L4

security@blaize.tech n

Blaize.Security Synthex Smart Contact Audit

Synthex contracts’
source code was taken
from the

provided by the

RA | | N(; Synthex Protocol team.

SCORE 9.6/10

The scope of the project includes Synthex set of contracts:

contracts\token contracts\synthex
SyntheXToken.sol SyntheXStorage.sol
EscrowedSYX.sol SyntheX.sol

contracts\token\redeem AddressStorage.sol

SrowicEalE aol AccessControlList.sol

BaseTokenRedeemer.sol contracts\synth
contracts\pool ERC20X.sol
PoolStorage.sol

Pool.sol

Repository:

https:/github.com/synthe-x/contractg

Branch: main

Initial commit:
B e793bf057d997ab30381c5d4361e8711877€52a5
Final commit:

B 350f868fcube33b7678f4lea7f4224199¢312b0d

security@blaize.tech n

https://github.com/binaryx-protocol/binaryx_app
https://github.com/synthe-x/contracts

Bla IZB.SGCUI’Ity Synthex Smart Contact Audit

TECHNICAL
SUMMARY

During the audit, we examined the security of smart contracts for
the Synthex protocol. Our task was to find and describe any
security issues in the smart contracts of the platform. This report
presents the findings of the Synthex smart contracts security audit
of the Synthex smart contracts conducted between March 16th,
2023, and April 6th, 2023.

Testable code
0% 25% 50% 75% 100%

The code is 100% testable, which
corresponds to the industry standard of 95%.

The audit scope includes the unit test coverage, based on the
smart contract code, documentation and requirements presented
by the Synthex team. The coverage is calculated based on the set
of Hardhat framework tests and scripts from additional testing
strategies. However, to ensure the security of the contract, the
Blaize.Security team suggests that the Synthex team launch a bug
bounty program to encourage further active analysis of the smart
contracts.

security@blaize.tech B

Blaize.Security

Synthex Smart Contact Audit

THE GRAPH OF
VULNERABILITIES
DISTRIBUTION:
B crmca
HIGH
MEDIUM
LOW 58%
LOWEST
The table below shows the number of the
detected issues and their severity. A total of 34
problems were found. 33 issues were fixed or
verified by the Synthex team.
FOUND FIXED/VERIFIED
Critical 3 3
High 2 2
Medium 3 3
Low 6 6
Lowest 20 19

security@blaize.tech n

Blaize.Security Synthex Smart Contact Audit

SEVERITY DEFINITION

Critical

The system contains several issues ranked as very
serious and dangerous for users and the secure
work of the system. Requires immediate

fixes and a further check.

High

The system contains a couple of serious issues, which
lead to unreliable work of the system and migh

cause a huge data or financial leak. Requires immediate
fixes and a further check.

Medium

The system contains issues that may lead to
medium financial loss or users’ private information
leak. Requires immediate fixes and a further
check.

Low

The system contains several risks ranked as relatively
small with the low impact on the users’ information
and financial security. Requires fixes.

Lowest

The system does not contain any issues critical to the
secure work of the system, yet it is relevant for best
practices.

security@blaize.tech B

Blaize.Security Synthex Smart Contact Audit

AUDITING STRATEGY AND
TECHNIQUES APPLIED/PROCEDURE

We have scanned this smart contract for commonly known and
more specific vulnerabilities:

= Unsafe type inference; = DoS with Block Gas Limit;
= Timestamp Dependence; = DoS with (unexpected) Throw;
= Reentrancy; = Byte array vulnerabilities;
= Implicit visibility level; = Malicious libraries;
= Gas Limit and Loops; = Style guide violation;
= Transaction-Ordering = ERC20 API violation;
Dependence; = Uninitialized state/storage/
= Unchecked external call - local variables;
Unchecked math; = Compile version not fixed.
Procedure

We checked the contract for the following parameters:

= Whether the contract is secure;

= Whether the contract corresponds to the documentation;

= Whether the contract meets the best practices in the efficient use of
gas, code readability.

Automated analysis:

We scanned the contracts using several publicly available
automated analysis tools such as Mythril, Solhint, Slither, and
Smartdec. All issues found were verified manually.

Manual audit:

We manually analyzed the smart contracts to identify potential
security vulnerabilities. Our analysis involved a comparison of the
smart contract logic with the description provided in the
documentation.

security@blaize.tech n

Blaize.Security Synthex Smart Contact Audit

EXECUTIVE
SUMMARY

The audited protocol is a synthetics platform based on the
overcollaterization principle. The platform receives collateral
deposits from users and mints synthetics by the linear utilization
rate together with debt tokens for the user. Therefore the platform
also combines features from the lending protocol since it enables
the liquidation process for accounts under the collateral
requirement. For user incentivization, the platform provides
rewards distributions for liquidity provides and SYX token providers
(via the esSYX contract). More info about the protocol (including
admins functions) is described in the "Protocol Overview" section.

Firstly, the Blaize auditors team must mention that protocol has
its own Oracle contracts, which utilize Chainlink, Aave, and
Compound feeds. Though, Oracle contracts themselves are out of
the scope of the current audits. So, the Blaize Security team highly
recommends utilizing several price sources, having a TWAP-like
solution, or using Chainlink or other oracles aggregating several
sources. Dependency of the synthetic on a single price source (like
Compound or Aave) increases the risk of price manipulation
through the 3rd party pool manipulation.

From other side, the security team performed an extensive
manual audit during the testing stage and covered several
checklists for common attack vectors and possible exploit
possibilities. The team found several critical and high-risk issues
with collateral withdrawal, fee calculation during the liquidation,
and ETH transfer.

security@blaize.tech

Blaize.Security

Synthex Smart Contact Audit

Also, another noticeable issue was connected to ETH and WETH's
identical support. So, after the audit, the SyntheX team added
WETH support with mandatory ETH wrapping in the protocol. Also,
most protocol contracts, including the Synthetic contract itself,
collateral pool, and rewards pool, are upgradeable. The SyntheX
team successfully fixed or verified all issues, and the security team
rechecked fixes with appropriate tests.

The code is well documented with natspec and internal
comments and contains important examples in crucial code
places. The project has good native coverage for main user
scenarios. The overall security is high enough, though the security
team decreased the final rating a bit because of the dependency
on oracles, which were out of the scope, the centralization aspect
because of contract upgradeability, and several issues where the
team has taken responsibility at. Tests coverage mark shows the
evaluation of the protocol’s native coverage.

From all aspects, SyntheX protocol has passed the security audit.

RATING
Security Q.5
Gas usage and logic optimization 9.7
Code quality 10
Test coverage 9.2
Total 9.6

security@blaize.tech

Blaize.Security Synthex Smart Contact Audit

PROTOCOL
OVERVIEW

SyntheX is a decentralized finance (DeFi) system that allows users
to mint synthetic assets backed by collateral assets. The main
functionality of SyntheX are:

1. Reward Distribution: The distribution of rewards for liquidity
providers in various pools.

2. Collateral Management: Management of collateral assets,
including depositing, withdrawing, enabling/disabling collateral,
setting collateral caps, and volatility ratios.

3. Trading Pools: The contracts enable/disable trading pools and
manage volatility ratios.

4. Administration: The contracts include functions for managing
access control, pausing/unpausing the contract, and updating
addresses for various components.

SyntheX contract handles reward distribution and managing
access control.

Pool manages collaterals and volatility ratios.

ERC20X contract includes functions for minting, burning, swapping,

and liquidating. The contract also implements a flash mint

function, allowing users to borrow tokens for a short period with a
specified fee, payable to the SyntheX system's vault.

Crowdsale contract allows users to buy SYX tokens (SyntheX) with
ETH or ERC20 tokens at a fixed rate during a specified timeframe.
SyntheXToken contract is an ERC20 token contract with additional
features such as burnable, pausable, permit (gasless approval),
and access control based on the SyntheX system contract.

security@blaize.tech n

Blaize.Security Synthex Smart Contact Audit
—

EscrowedSYX contract is an ERC20 token contract with additional
features such as staking, rewards distribution, and access control.
The main features of this contract include the following:

1. Locking tokens: The lock function lets users lock their SYX tokens
and receive escrowed SYX (esSYX) tokens in return.

2. Unlocking tokens: The startUnlock function enables users to
start the process of unlocking their SYX tokens by burning their
esSYX tokens.

3. Claiming unlocked tokens: The claimUnlocked function allows
users to claim their unlocked SYX tokens.

4. Staking and rewards: Users can earn rewards using another
token (specified by the REWARD_TOKEN address) by holding
esSYX tokens. The rewards can be claimed using the getReward
function.

5. Voting: The contract supports voting using the ERC20Votes
extension.

The _transfer function is also overridden to enforce that only
authorized senders can transfer esSYX tokens.

AccessControlList contract is for managing role-based access
control using OpenZeppelin's AccessControlUpgradeable and
Initializable contracts. It defines three roles: LO_ADMIN_ROLE,
L1_ADMIN_ROLE, and L2_ADMIN_ROLE, each with different levels of
authority.

security@blaize.tech n

Blaize.Security Smart Contact Audit

]

SynteX.sol
[S S S S A Ay, e e | |
| = | | " | | |
i L2Admin i1 LiAdmin i i Owner |
| | | | | et 5 |
I i I initialize I
: pcuse{) Push specified reward : | SEtAddressﬂ | | U |
| token to specified pool, | | | | |
I UI‘IDQ‘USG() set speed (reward per i T T T s * [|
: setPooISpeed() sec) for this reward token : : :
| |
i | | |
I I | I
i removeRewardToken i i | setup LO, L1, L2 admins |
| ” Remeve specified | [(used in other platform [
I reward token from 1 | RHTGATS) |
| reward tokens list | | ’ |
I i | |
| I | |

Pool Pool

L |

distribute(_account,
_totalSupply, _balance)

] O

distribute(_totalSupply)

Accrue rewards to

aesiflen noal _updatePoolRewardindex()

_updatePoolRewardindex()

Calculate reward

_distributeAccountReward() accrued by a supplier
and transfer it to them

claimReward(
address[] _rewardTokens, _updatePoolRewardindex() Iterate through all pools
address holder, _distributeAccountReward() and reward tokens

I

|

I

]

| User
|

| address(] _pools)
I

i

I

| | I | | |
. | = |

: L2Admin : 1 L1IAdmin I : Owner :

| | ! ! | |
I I

| pause() L0 mint() © 1 initialize() need Synthex address for !

| | ! ! | initlalization |

I unpause() e |

| | | |

| | | |

I I I I

info@blaze.tech m

Bla ize.Securlty Smart Contact Audit

]

Crowdsale.sol

T T, T, e e e e e
I ¥ 1 I > I I I
i L2Admin i1 L2Admin Set rate for a specific i1 Owner SyntheX address is needed. |
b ! [token, used when buying ! I i e There are also arguments !
I pause() I updateRate() SYX with this token 1 initialize() needed to limit the whitelist I
: 0 : : : : perlod (endTime, startTime :

unpause The and other)
: : : endsal e{} :) : : BaseTokenRedes :
[mer contract is
	i withdraw() Withdraw ETH/ERC20		responsible for the
I	tokens from contract		token lock/unlock
I i I I I I
I i | I | |
Euymg with tokens Only available
User during the whitelist User User after whitelist User
period period

l (_w in functions) | l l l

[buyWIthETH_w()]

! _ _ l . !

bunithToksn_w()] [buyWithETH()] [buyWithToken() J

Ghect ot imeis vl reckreximemvats,| [Gaskiectimativald] [Chackiter e ol
verify merkle proof | i verify merkle proof | | period] - period
[Calculate the amount | [Transfer in token] -_Qq_leulute the amount to| | Transferin token
to be unlocked/issued amount, calculate the be unlocked/issued to amount, calculate the
to the user based on his amount to be unlocked/ the user based on his amount to be unlocked/
msg.value + additional issued to the user based msg.value + additional issued to the user based
checks on amount on his token amount checks on amount on his token amount

BaseTokenRedeemer.sol l

L
A

Merkel Proof is used
in the contract for
the user to prove
that he is on the

whitelist count for user, reserve SYX for unlock

Create unlock request, increment request]

BaseTokenRedeemer.sol

Get amount to unlock from

User unlock() _unlockinternal() Hnlockedl)

Check if contract has enough 5
SYX to unlock i

Increment claimed amount, release
reserved SYX

Transfer SYX to user

info@blaze.tech m

Bla IZB.SGCUI’Ity Smart Contact Audit

Transfer SYX to user
Increment claimed amaount, release
reserved SYX

N

I |
I I
: EscrowedSYX.sol :
I I
Bl ety e e et e At B i
| | | | | | [!
|| L2Admin | | LAdmin | | owner -
I | I | | | | |
| | [| | I e lize() SyntheX address is needed. | |
[[| [i [I initialize There are also arguments [[

notifyRewar 9
: : pause() L Y d() Lol needed to limit the whitelist : :
. period (endTime, startTime
: : unpause() Lo setRewardsDuration() - _ and Behn) | :
i i 1 i i i The i i
i i i 1 grantRole() | | BaseTokenkedee ! !
! ! ! " revokeRole 0 ! ! mer contract is ! !
: : : : : : responsible for the : :
: : : : setLockPeriod() : : token lock/unlock : :
1 | 1 | 1 1 | |
i e i S e e e e e i e o e e =i 3 et i i ;
I 1
BY e o e e s e e e e e e T S s S s e g e e 1
I 1
| i) i o i |
I I | I
| Lock S¥X tokens on Craate request for |
; ! User eontract and User unlock SYX tokens i I
! [= receive es5YX = = [|
- - l : | i ! ! B
| |
i | lock() startUnlock() : |
[| L - L - | !
| |
. ! _ i l _ »
| | 1 | |
| | Transfer tokens from user to ; . | i
| i BRI _burn escrowed tokens from user , |
I L o I
| | l - - | |
| | _ . BaseTokenRedeemer.sol l | |
I I] I
: ! Mint escrowed tokens ! !
I I
| : - - : |
I I] I
| | | |
; ! Create unlock reguest, increment ! !
i i request count for user, reserve SYX i i
| | - for unlock | |
I) Claim all unlocked) !
; : [i] SYN tokens ! i
| | | |
| I l | |
| I | |
| i [claimedUnlocked(} :l | '
| I | | |
| | | |
| | BoseTokenRedeemer.sol l B T T 1 | |
! : User Withdraws reward : !
| |
| | _unlockinternal() L l | Toxens | |
| | | |
| | - = | |
| | | |
| (= - getReward() i I
: : Get amount te unlock from L - : :
: i unlocked() l i]
1 I = - : 7 I 1
: T ! . updateReward() i !
: : Check if contract has enough SYX to L i : !
| I unlock l | |
[: - - i 1 : [
| i l _ Transfer rewards to user i !
i i

Lo . ; L
| | | |
| ! ! |
| [! |
| ! ! |
| [! |
| ! ! |
| ! | |
| | | |
| ! ! |
| !] |
I 1
I I
I 1

info@blaze.tech E

Smart Contact Audit

Blaize.Security

>
'
32}
I
=
Zz
>
W

vser
I
lock()

User
exitCollateral()

User
enterCollateral()

No

User
lock()
Functionality for depositing a

specified amount of collateral
to the pool (in the depositETH()

function, the deposit oceurs for
the ETH collateral with the
transferred amount msgvalus)

L
lock()

info@blaze.tech

Blaize.Security Smart Contact Audit

User User]
[withdrawETH()] [withdraw()]
| > withdrawlinternal() € |
Functionality for = l =
withdraw a
specified amount of Check depositBalance, and if the
collateral of the amount to be withdrawn is greater
poal than the deposit balance, the entire

deposit balance will be withdrawn
Check the user's liquidity and
make changes to the amount to be

withdrawn depending on the
amount of liquidity

Update balance and update
collateral supply

withdraw from g

LIAdmin L2Admin Owner
setPriceOracle() pause() initialize()
setlssuerAlloc() unpause()

S ill
setFeeToken() Add collateral Coggr]‘laac;?;l:::srgt
with specified e a t o
updateCollateral() params Od?gazén;nzwe
addSynth()

Functionality to add
updateSynth() synth addresses,
chanae synth
removeSynth() | parameters and remove
synth from the synth list

Set SyntheX address
{used for restriction
by roles (LIAdmin,
LzAdmin)) and

I 1
I)
I 1
I 1
I 1
| I
| [
|]
| 1
|]
|]
| [
|)
| feeToken is sat |
|]
|]
| [
|]
|]
| [
| [
| 1
| I
[reward distribution |
| |
| 1
|)

additional actions in pool

info@blaze.tech m

Smart Contact Audit

Blaize.Security

>
'
32}
I
=
Zz
>
W

5o o
L2 5
98¢ 2
2§58 2y
5073 €2
£2 @
&0 o

ERC20X
commitSwap()
commitMint()

m
£
£ 3
55 o3
3 g3
£ =
a 5
T
2 3
X =] »x M
Mm — M —y o
2 g g 2
u £
8 &
(4]
©°
a
Q L 3 L)
o}
e .

info@blaze.tech

Smart Contact Audit

Blaize.Security

b
[
Ly
o
-
Z
>
(/7]

| |
| 1
| |
| l
| [
| 1
| l
| 1
| 1
| 1
| 1
| 1
| |
| 1
| |
| |
| |
| |
| [
| 1
| [
| 5 1
| B |
| Msm 1
I am I
[Fea |
| £38° i
[(] |
| @ |
| l
| [
| 1
| [
| 1
| 1
| 1
| l
| . [
| = 9 “
| nnu H |
| fe] 1
| 2 B “
0O £ i
. .
" i
L8 i
|| 38 "
1 o 1
| mﬁ 1
| 3% "
I _m 1
] 1
I 1
] 1
" i
I U 1
" 2 "
1 w 1
1 K |
e— 1) 1
9 1 c 2 |
% 1 E O "
S 38
g | 5.5 "
m I 1

User
l
liquidate()
|

o
S
5]
o)
=
e
-
=
£
E
o
Q

Paol.sal

l
!

Poal.sol

User
burn()
commitBurn()

Poalsol

Issue debt
Check
scheme
with Poolsol
amountToM
int getted
from
commitMing)
function

mint(}
|

Paol.sal

Burning
synth by
debt pool

Peol
burninternal(}

Minting
synth by
debt pool

Pool
mintinternal()

info@blaze.tech

BIalze.SecurIty Smart Contact Audit

SYNTHE-X

Synthe-X protocol

&) Add synth
(deployed 7) Setup Collateral
ERC320X) and set collateral (ERC20 token)
fee token
Pool, debt tokens
Synthetic (Pool contract)
(ERC20X contract) "
3) Deploy Pool with
T SyntheX (needed
4iset pool g for"m{m'urd
3':’3-:1‘1 f?‘r distribution, check
rEWardtoen access level for
admins and get
vault address)
1) Deploy Vault
with Synthex
r - 1 [access level
‘Rewards distribution for admins)
{&yn Rt Sor Gt) 2) $etup_\-’uult_
5) Deploy ERC20X | o] (311:0?'& fees fniolm
{synth) with SyntheX e pre:gcc)in
check access level for e Synthal
admins and get vault 0) Deploy ‘
{work with synth debt)

: €
3) Deploy EsSYX with ‘ J
SyntheX (check access
level for admins) , 1) Check access
SynteXToken (SYX, token to level for admins
lock) and reward setup from SyntheX

2) Deploy Crowdsale
with SyntheX (check
access level for admins),
SyntheXToken (token to
sale) and sale setup

I
i
I
i
I
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
i
I
]
I
]
i
I
i
i
i
i
i
i
i
i
i
i
i
i
i
|
|
|
|
|
I
: address) and Pool SyntheX
I
I
]
I
I
I
I
I
i
i
i
i
i
i
|
|
|
|
|
|
|
I
|
I
1
I
1
|
I
I
I
I
|
|
|
I
i
|
i
|
|
|
i
|
|
|
|
I
|
I

info@blaze.tech

Blaize.Security Synthex Smart Contact Audit

COMPLETE ANALYSIS

CRITICAL-1 + Resolved

User can withdraw extra funds

Pool.sol: All withdraw functions.
Scenario 1:

1. Userl deposits collateral

2. User2 withdraws collateral

Scenario 2 (for checks after the obvious fix)

1) The user deposits collaterall and incurs debt to make
getAccountLiquidity() negative (this can be achieved with price
manipulation via flash loans).

2) The user withdraws any amount of collateral2. Due to the
absence of checks and because the amount is set to 0 (due to
negative liquidity) in withdrawlInternal(), the contract successfully
updates the storage.

3) User gets collateral2 as it is sent in the withdraw functions
without checks.

As a result, the user can withdraw any available amount of any
collateral from the contract. There are no restriction for the user:
the contract withdraws and transfers funds first, then just accepts
any accountCollateralBalance of the user (even 0) without
checking if the user ever deposited the collateral or has enough
balance for the withdrawal.

Also, others factors affected by this issue include: the deposit
amount withdrawn does not equal the sent amount for the user,
affected by this issue include (since the contract sends just
everything left in case of nonsufficient balance on the contract).

Recommendation:

* Review withdraw logic
« add a check for the market entrance before the funds transfer.

security@blaize.tech m

Blaize.Security Synthex Smart Contact Audit

+ provide restrictions based on accountCollateralBalonce and
collateral availability - before the transfer
* add checks and reverts in case of insufficient amounts on the
contract (both for tokens and ETH)
+ revert if the account falls off the collateral criteria
+ make funds transfer AFTER all storage changes - including
recalculation of the amount based on the available deposit,
and recalculation based on the liquidity available
+ also, itis generally not recommended to decrease the
withdrawn amount during the transaction without appropriate
warnings in the dApp interface and documentation - and
currently, these flows are not described
+ the general recommendation is to revert the transaction in case
of any failed check - instead of decreasing the withdrawn
amount
« verify all calculations for user liquidity - for users without
deposits
+ uncomment and finalize health checks.
It is also highly recommended to conduct verbal checks against
available collateral instead of relying on underflow reverts. This
impacts the readability of the code and revert investigations.

Incorrect currencies conversion for the withdrawal.

Pool.sol, withdrawlInternail()

_amount parameter of the withdraw function is in the collateral
currency (ETH or any other token), while the liquidity variable (which
holds the result of the getAccountLiquidity() call) is in USD. Though,
the contract still assigns liquidity directly to _amount, resulting in a
completely wrong amount.

Recommendation.

Review the withdrawlnternal() logic and correct the currency
conversions so that _amount, depositBalance, and totalDeposits
are always in the same currency.

Post-audit.

The currency conversion was removed. Now, the function checks
general collateral requirements.

security@blaize.tech m

Blaize.Security Synthex Smart Contact Audit
—

CRITICAL-3 + Resolved

Incorrect ETH amount transferred.

Pool.sol: transferOut().
The function sends msg.value of ETH instead of _amount.
For now user cannot withdraw funds.

Recommendation:

Correct transferred ETH amount.

+ Resolved

ETH transfer may fail.

Pool.sol, transferETH()

The function utilizes the .transfer() method to transfer ETH. The
transferETH() function sends ETH to an account, which may be set
to a multisig account. In this case, transfer() may revert because it
does not forward enough gas, causing funds to become stuck on
the contract.

Since the .transfer() and .send() methods became obsolete after
the Istanbul Ethereum update, it is recommended to use .call() for
transfering funds. This issue is marked as high because the receiver
address is provided by users, and a smart contract account could
potentially be used.

Recommendation:

Use .call() for ETH transfer with the check of the .call() result.

security@blaize.tech m

Blaize.Security Synthex Smart Contact Audit

+ Resolved

Fee is included twice during liquidation.

Pool.sol, commitLiquidatel().
The liquidation process follows these steps:

1. Get _amount of syntheticl from the liquidator.

2. Convert _amount into USD (line 427)

3. Increase the USD amount by the fee (USD * BASIS_POINTS/
(BASIS_POINTS - fee) (line 427). At this point, amountUSD covers
both _amount and the fee.

4. Convert the USD amount into amountQut in synthetic2 (line 433).

5. Assume that the account debt covers amountUSD and the
account collateral covers amountOut.

6. Move collateral from the account to the liguidator (line 467).

7. Convert amountQut back to USD (line 474) (so it still covers
_amount and fee from step 3).

8. Burn account debt.

9. Mint fee.

10. Convert amountUSD back to the syntheticl amount (line 492).

1. increase the syntheticl amount by fee again (line 492):
amountUSD.toToken() * (BASIS + fee) / BASIS -> it will increase
amount again.

After all, excluding conversions and assuming that the amount to
liguidate is covered by user’s debt, we will have _amount from the
liguidator increased twice by fee.

So, first of all, the liquidator covers fee twice; secondly, the function
will revert in ERC20X liquidate() since the returned amount will be
greater than the initial one.

Recommendation:

Verify the fee covering process. It appears that the fee should be
subtracted from the final amount on line 474 before burning the
debt. Additionally, there should be no increase in the liquidator’s
amount during the return. The math needs to be verified from the
Synthex team.

Post-audit:

Amount of synthl to burn now includes burn fee just once and step
(3) is corrected to exclude fee

security@blaize.tech m

Blaize.Security Synthex Smart Contact Audit

MEDIUM-1 + Resolved

Checking ETH price instead of token price.

Crowdsale.sol, function buyWithToken, and buyWithToken_w.
The user can be assigned zero tokens (line 155) due to absence of
check that token rate is not zero.

Recommendation:

Check that the price in ERC20 tokens is not zero.

MEDIUM-2 + Resolved

Possibly incorrect access control.

Pool.sol, updateCollaterall(),

The NatsPec documentation says that governance or L2Admin can
update the collateral. However, the function has strict restrictions
for LIAdmin. It appears that additional permission may be missing.

Recommendation:

Check the access control for pool admin functions and add
L2admin if needed OR correct the NatsPec documentation.

Recommendation.
The NatsPec documentation is correct now: the function is
restricted for L1 only.

MEDIUM-3 + Resolved

Pausable contract cannot be paused or unpaused .

ERC20X.s0l is PausableUpgradeable but neither pause or unpause
functions are implemented.

Recommendation:

Implement pause and unpause functions or remove the pausable
feature from contract.

security@blaize.tech m

Blaize.Security Synthex Smart Contact Audit

LOW-1 + Resolved

Inaccurate version pragma.

‘pragma solidity 20.8.0; is used in all contracts. The contract should
be deployed with the same compiler version and options that it
has been most tested with. Locking the pragma version helps
ensure the contract is not accidentally deployed using a different
version. Additionally, older versions may contain bugs and
vulnerabilities and be less optimized in terms of gas usage. Using
the latest version of Solidity and specifying the exact pragma is
recommended.

Recommendation:

Specify the latest version of Solidity in the pragma statement.

Post-audit.
Contracts use solc 0.8.19.

LOW-2 + Resolved

Missing validation.

ERC20X.sol: initialize() hasnt validation for pool.address and
syntheX.address.

BaseTokenRedeemer.sol: initialize() hasnt validation for _TOKEN,
_lockPeriod, _unlockPeriod, and _percUnlockAtRelease.

This allows these fields to be initialized with any address, not just
the addresses of specific contracts, which can break the contract.

Recommendation:

Add validation pool.address and synthexX.address initializer.

security@blaize.tech m

Blaize.Security Synthex Smart Contact Audit
—

LOW-3 + Resolved

Extra gas spendings on SafeMath.

SyntheX.sol, Pool.sol, ERC20X.sol, BaseTokenRedeemer.sol,
EscrowedSYX.sol.

The contract utilizes SafeMath which became obsolete, since solc
0.8.x has built in support of overflow/underflow reverts. Consider
removing the library usage for gas saving.

Recommendation:

Remove SafeMath usage.

LOW-4 « Verified

Confusing return values.

SyntheX.sol: getRewardsAccrued(), claimReward().
It is unclear what rewards should be returned for
getRewardsAccrued() and what amounts transferred in
claimRewards().
Consider scenario:
* pooll with RewardTokenA
* pool2 with RewardTokenB
* user have deposits into both pools and mint ERCX tokens
+ call getRewardsAccrued() for both pools and both reward
tokens -> the contract will update rewardAccrued[user] for both
reward tokens
+ call get RewardsAccrued([RewardTokenA], user, [pool2]) -> the
protocol will return rewardAccrued for RewardTokenA, though it
is not bound to the pool2
+ call claimReward([RewardTokenAl], user, [pool2]) -> the protocol
will transfer RewardTokenA, though the user calls function for
the pool2

security@blaize.tech

Blaize.Security Synthex Smart Contact Audit

It happens because of the unclear flow for claiming: the contract
has connection rewardToken -> user (in rewardAccrued mapping),
rewardToken -> pool (in rewardState mapping) but functions for
claim and accrue seem to use pool -> reward token connection.
Therefore, either make claim and accrue functions working for all
rewards independently from the pool (for both accrue and claim),
OR use rewards connected to the pool (therefore recommendation
connects with Info-11 about dedicated rewards.

This issue is marked as Low since there are no funds lost. But, we
highly recommend working on the confusing logic (especially when
users will provide additional deposits into several pools) since the
impact on display and the process of how users receive tokens will
become more confusing with the protocol growth.
Recommendation.

Remove the rewardTokens parameter from both functions and use
dedicated rewards for the pool OR use functions for rewardTokens
independently from the pool OR confirm current logic which will
become confusing for several pools with several reward tokens.
Post-audit:

SyntheX team verified, that the dApp will resolve possible issues
offchain, since onchain storage is not compromised.

LOW-5 « Resolved

lllogical storage structure.

Pool.sol: synthex, struct Vars_Burn, struct Vars_Mint

The pool contract utilizes a pattern for the storage separation from
the implementation (into PoolStorage.sol). Though, the Synthex
parameter remains in the Pool contract. That may cause future
issues during further development or contracts upgrade (since the
pool is an upgradeable contract).

The same applies to struct Vars_Burn and struct Vars_Mint
definitions - it violates best practices and code readability, so it is
better to move to the storage contract as well (to other structs
definitions).

Recommendation:

Move the storage variable to the storage contract.

security@blaize.tech m

Blaize.Security Synthex Smart Contact Audit

LOW-6 « Resolved

User cannot exit collateral while the deposited collateral balance
is zero.

Pool.sol, function exitCollateral(), line 112. When a user has last
collateral he cannot exit even if he has zero bad debt

Recommendation:

Change the comparison from more than zero, to more or equal to
zero in line 12.

LOWEST-1 « Verified

Custom errors should be used

Starting from the 0.8.4 version of Solidity it is recommended to use
custom errors instead of storing error message strings in storage
and use “require” statements. Using custom errors is more efficient
in terms of gas spending and increases code readability.

Recommendation:
Use custom errors.

Post-audit.
The customer prefers numerated errors (in Compound style).

LOWEST-2 +« Resolved

Duplicated code.
SyntheX.sol: line 5, 9.
The contract imports the UUPSUpgradeable.sol file twice.

Recommendation:
Remove one of the import statements to prevent confusion.

security@blaize.tech m

Blaize.Security Synthex Smart Contact Audit
—

LOWEST-3 + Resolved

Redundant imports.

SyntheX: line 19.

The contract imports hardhat/console.sol for debugging purposes,
but it does not appear to be used in the code.

The same applies to EscrowedSYX.sol: draft-ERC20Permitsol,
ERC20.s0l.

ERC20Votes inherit ERC20Permit, and ERC20Permit inherits from
ERC20.

The import of SyntheXToken.sol: ERC20FIashMint is not used.
EscrowedSYX.sol: The import of "./synthex/SyntheX.sol" can be
removed.

BaseTokenRedeemer.sol: The imports of SyntheXToken and SyntheX
can be removed.

Crowdsale: SyntheXToken and SyntheX (after the fix according to
info-12) can be removed.

Recommendation:

Remove redundant imports.

LOWEST-4 + Resolved

Duplicate "require’instead of modifier.

SyntheX.sol: pause(), unpausel().

To improve the readability of the contract, you should use
onlyL2Admin modifier existing in the contract instead of repeating
the ‘require(isL2Admin(msg.sender)Errors CALLER_NOT_L2_ADMIN)" in
the functions listed above.

Recommendation:

Use a modifier instead of the duplicated require’ statement.

security@blaize.tech

Blaize.Security Synthex Smart Contact Audit

LOWEST-5 + Resolved

No error message in require.

Crowdsale.sol, line 98, 99, 110, 132, 146, 188.

Note: this issue is connected with the Info-1 - in case custom errors
are used, apply custom errors for these cases as well.

Recommendation:

Add error message in require.

LOWEST-6 + Resolved

“Don't repeat yourself” code principle violation.

Crowdsale.sol, functions "buyWIithETH_w", "buyWithToken_w",
‘buyWiIthETH" and "buyWithToken™ have many lines of code in
common and can be united in one function.

Recommendation:
In case of absence of critical need in having separate functions we
suggest making a single function.

LOWEST-7 + Resolved

The presence of TODO in the code.

In contract ERC20X.sol lines 65, 77, 89, 100 have comments stating
“TODO check if the amount is correct”. According to the logic of the
contract, checking the correct amount is really required. The
presence of "TODO" in the code is not recommended.

This issue is marked as Info. However, it may signal about missed or
unfinished functionality and may be requalified.

Recommendation:
Add check to verify if the amount is correct. Remove the "“TODO”
comments.

Post-audit.
The contract now has the necessary validations.

security@blaize.tech m

Blaize.Security Synthex Smart Contact Audit
—

LOWEST-8 + Resolved

Incorrect error.

ERC20X.s0l, functions pause() and unpause(). Function check L2
admin but throw error for L1 admin.

Recommendation:

Use correct errors.

LOWEST-9 + Resolved

Role shouldn't be able to have such permissions by the context.
Pool.sol: initialize()

A pause() is called in the initialization (line 48) can only be called by
L2Admin. Accordingly, deployment (and initialize() call) will be
performed by L2Admin.

Recommendation:

Verify that L2Admin is responsible for the deployment OR call
internal method _pause() for correctness.

LOWEST-10 + Resolved

Magic number used

SyntheX.sol: _distributeAccountReward().

The function uses 1e36 numeric constant (line 184) as a divisor for
the accountDelta. Looks like it matches the rewardinitialindex
constant. If so - it is better to use that constant. If not - it is
recommended to use d nhew constant.

Recommendation:

Use constant instead of "magic number” for better code
consistency and numeric values matching.

security@blaize.tech m

Blaize.Security Synthex Smart Contact Audit

LOWEST-1 + Resolved

Role-based restriction recommended.

SyntheX sol: distribute() (both functions).

By default, both functions should be called by the Pool only (since
they use reward tokens bound to msg.sender). Therefore, it is better
to restrict the functions, as they are currently available to the
public.

Recommendation:

Adjust the NatsPec documentation to reflect the accessibility of the
functions.

LOWEST-12 + Resolved

Unoptimized import.

SyntheX.sol: setPoolSpeed() , claimReward(), getRewardsAccrued()
SyntheXToken.sol: SyntheX import.

ERC20X: SyntheX and Pool import.

The functions use the Pool contract to access the totalSupply()
function. It is recommended to use the IPool interface instead. This
requires adding the totalSupply() and balanceOf functions to the
interface. Using IPool will decrease the contract size and eliminate
the current cross-dependency between contracts.

The same applies to SynthexToken.sol, Crowdsale, and ERC20X.

Recommendation:
Consider using the IPool interface (after its expanding for
view functions) and ISynthexX.

Post-audit:
SynthexXToken, and Crowdsale now utilize the SyntheX interface,
and SyntheX uses the Pool interface.

security@blaize.tech m

Blaize.Security Synthex Smart Contact Audit

LOWEST-13 « Verified

Use dedicated reward tokens for pools.

SyntheXsol: claimReward(), getRewardsAccrued().

The functions receive reward tokens as arguments, though passing
any arbitrary tokens into it with a certain level of unpredicted
behavior. Therefore, it is recommended to use a dedicated tokens
store in rewardTokens mapping (since both functions also get a list
of pools).

First of all - it will decrease the risk of unexpected behavior with
arbitrary tokens.

Secondly - it will decrease the number of cycle leaps in internal
functions.

This issue is marked as Info. Despite the risk of unexpected
behavior with arbitrary tokens, exploit risk is very low with no
positive scenarios for now. Though, since contracts are
upgradeable and logic can be changed at any moment, the
absence of arbitrary tokens sanitizing may cause a risk increase in

the future.
Recommendation:

Remove _rewardTokens arguments from claimReward() and
getRewardsAccrued() function and use tokens stored in
rewardTokens mapping OR provide validation/sanitizing that
tokens in the passed array correspond to the pools.
Recommendation:

SyntheX team verified, that possible display issues will be resolved
offchain in the frontend part of the dApp.

security@blaize.tech m

Blaize.Security Synthex Smart Contact Audit

LOWEST-14 «” Verified

Referral is not used for any purposes

ERC20X: mint(), swap()

Both functions receive “referredBy” argument which is not used.
There is no logic bound to the ‘referredBy”. This parameter is only
emitted in the event. Since functions are public and not restricted,
anyone can call them with any parameter passed as “referredBy”.
So, it can influence the info shown in the dApp and historical data -
and it may influence further development. This is also crucial, since
there are no validations against the referral.

Recommendation:

Remove unused parameter OR provide validation OR move
referrals to the part of the protocol where they are used.

Post-audit:
the team verified the necessity of “referredBy” parameters, and
verifies that conditions for self-referring will be handled off-chain.

LOWEST-15 + Resolved

Missing fee validation

ERC20X.sol: updateFlashFee()
There is no validation against the BASIS_POINTS.

Recommendation:
Add validation for the fee to be not larger than BASIS_POINT.

security@blaize.tech E

Blaize.Security Synthex Smart Contact Audit

LOWEST-16 + Resolved

ETH and WETH are different collaterals

Pool.sol: deposit functions

ETH has own descriptor for the collateral address
(OxEeeeeckeeeckeEeecteEeEecEEEeeecteeeceeeeckEEek) and from this
point of view, there is no case to work with wrapped ETH (WETH), so
it will be treated as different collateral.

This issue is marked as Info, since it refers to business logic rather
than security. Therefore, it needs verification from the team. Though
it also refers to an important use case, it should be mentioned in
the report.

Recommendation:

Verify that WETH and ETH are different collaterals from the protocol
perspective OR that WETH will not be used in the system.

Post-audit:

The team added direct WETH support. The contract stores WETH
address and wraps ETH into WETH during the deposit, and users
can choose unwrapping during the withdrawal.

LOWEST-17 « Verified

More debt than synthetics created on the mint
Pool.sol: commitMint()
The function provides the next calculations:
* gets requested amount of synthetic from ERC20X contract
» uses oracle to get USD equivalent of synthetic amount
* adds USD equivalent of minter fee
* mints debt tokens for the whole amount of USD equivalent + USD
fee equivalent. Now the user has debt of USD amount + USD fee
amount
* provides opposite conversion of USD equivalent into the
synthetics amount (the function returns this number and ERC20X
mints this amount of synthetics for the user)

security@blaize.tech m

Blaize.Security Synthex Smart Contact Audit

* provides oppaosite conversion of USD equivalent of minter fee

* decreases minter fee by issuerAlloc percent

* mints the leftover (minterFee * (1 - issuerAlloc)) to the vault
Therefore we have (USD equivalent + USD minter fee equivalent) of
debt tokens minted to the user and (synth amount + minterFee * (1 -
issuerAlloc)) of synthetics minted. So minterFee * issuerAlloc of
synthetics is never minted. Therefore, the system will have more
debt than synthetics minted.
This issue is marked as Info because it is currently unknown
whether it is a bug in calculations or desired logic. Though, it may
be requalified as High after receiving comments from the team, as
this approach may lead users to lose money due to excessive debt.

Recommendation:

Verify and correct the calculations so that the issuerAlloc of debt
will actually be burnt.

Post-audit:
The team added a self-explaining example as a comment to the
code.

LOWEST-18 + Verified

Confusing ‘require’ statement.

ERC20X.sol: function swap(), line 96é.

An amount is passed to the swap() ERC20X then passed to pool's
commitSwap() function. Amount will not change in any way during
all actions in the commitSwap() function. Then it turns out that on
line 96 require’ checks whether the parameter amount is equal to
the parameter amount

Recommendation.

Remove the reqguire, OR validate the logic, perhaps the return
value of commitSwap is not correct.

Post-audit.

Verified by the team to be necessary for future updates

security@blaize.tech

Blaize.Security Synthex Smart Contact Audit

LOWEST-19 Unresolved

Conflicting checks.

Pool.sol: commitSwap().

The function contains a requirement for synth to be active. Though,
it also contains check for the inactive synth - but the function will
revert in case of an inactive synth anyway.

Recommendation.
Verify the logic and correct the checks for inactive or disabled
synths.

LOWEST-19 « Resolved

Liquidation bonus math

Pool.sol: commitLiquidate().

Looks like comments conflict with the code

The comment before the refund calculation states, that refund
should be calculated if there is no enough collateral for the full
penalty. Though, the refund itself is calculated in the opposite case.
Partial penalty is paid if ltv*ligBonus > 1, but refund is calculated in
the “else” statement.

Recommendation.

Verify the logic and either correct the comment OR correct the
calculation.

Post-audit.

Bonus calculation is correct, the team updated comments in the
code

security@blaize.tech E

Blaize.Security

Synthex Smart Contact Audit

—

contracts\token
SyntheXToken.sol
EscrowedSYX.so

v Re-entrancy Pass

v/ Access Management Hierarchy Pass

v/ Arithmetic Over/Under Flows Pass

+/ Delegatecall Unexpected Ether Pass

v/ Default Public Visibility Pass

v/ Hidden Malicious Code Pass

v Entropy lllusion (Lack of Randomness) Pass

v/ External Contract Referencing Pass

v/ Short Address/Parameter Attack Pass

v/ Unchecked CALL Return Values Pass

v/ Race Conditions/Front Running Pass

v/ General Denial Of Service (DOS) Pass

v Uninitialized Storage Pointers Pass

v/ Floating Points and Precision Pass

v/ Tx.Origin Authentication Pass

v Signhatures Replay Pass

v/ Pool Asset Security (backdoors in the Pass

underlying ERC-20)

security@blaize.tech

Blaize.Security

Synthex Smart Contact Audit

—

contracts\token\redeem
Crowdsale.sol
BaseTokenRedeemer.sol

v/ Re-entrancy Pass

v/ Access Management Hierarchy Pass

v/ Arithmetic Over/Under Flows Pass

v Delegatecall Unexpected Ether Pass

+/ Default Public Visibility Pass

v/ Hidden Malicious Code Pass

v/ Entropy lllusion (Lack of Randomness) Pass

v/ External Contract Referencing Pass

v/ Short Address/Parameter Attack Pass

v/ Unchecked CALL Return Values Pass

v/ Race Conditions/Front Running Pass

v/ General Denial Of Service (DOS) Pass

+ Uninitialized Storage Pointers Pass

v/ Floating Points and Precision Pass

v Tx.Origin Authentication Pass

v Signatures Replay Pass

v/ Pool Asset Security (backdoors in the Pass

underlying ERC-20)

security@blaize.tech

Blaize.Security

Synthex Smart Contact Audit

—

contracts\synthex
SyntheXStorage.sol
SyntheX.sol
AddressStorage.sol
AccessControllList.sol

v/ Re-entrancy Pass

v/ Access Management Hierarchy Pass

v/ Arithmetic Over/Under Flows Pass

v Delegatecall Unexpected Ether Pass

+/ Default Public Visibility Pass

v/ Hidden Malicious Code Pass

v/ Entropy lllusion (Lack of Randomness) Pass

v/ External Contract Referencing Pass

v/ Short Address/Parameter Attack Pass

v/ Unchecked CALL Return Values Pass

v/ Race Conditions/Front Running Pass

v/ General Denial Of Service (DOS) Pass

+ Uninitialized Storage Pointers Pass

v/ Floating Points and Precision Pass

v Tx.Origin Authentication Pass

v Signatures Replay Pass

v/ Pool Asset Security (backdoors in the Pass

underlying ERC-20)

security@blaize.tech

Blaize.Security

Synthex Smart Contact Audit

—
contracts\pool
PoolStorage.sol
Pool.sol
v/ Re-entrancy Pass
v/ Access Management Hierarchy Pass
v/ Arithmetic Over/Under Flows Pass
v Delegatecall Unexpected Ether Pass
+/ Default Public Visibility Pass
v/ Hidden Malicious Code Pass
v/ Entropy lllusion (Lack of Randomness) Pass
v/ External Contract Referencing Pass
v/ Short Address/Parameter Attack Pass
v/ Unchecked CALL Return Values Pass
v/ Race Conditions/Front Running Pass
v/ General Denial Of Service (DOS) Pass
+ Uninitialized Storage Pointers Pass
v/ Floating Points and Precision Pass
v Tx.Origin Authentication Pass
v Signatures Replay Pass
v/ Pool Asset Security (backdoors in the Pass

underlying ERC-20)

security@blaize.tech

Blaize.Security

Synthex Smart Contact Audit

—
contracts\synth
ERC20X.sol
v/ Re-entrancy Pass
v/ Access Management Hierarchy Pass
v/ Arithmetic Over/Under Flows Pass
v Delegatecall Unexpected Ether Pass
+/ Default Public Visibility Pass
v/ Hidden Malicious Code Pass
v/ Entropy lllusion (Lack of Randomness) Pass
v/ External Contract Referencing Pass
v/ Short Address/Parameter Attack Pass
v/ Unchecked CALL Return Values Pass
v/ Race Conditions/Front Running Pass
v/ General Denial Of Service (DOS) Pass
+ Uninitialized Storage Pointers Pass
v/ Floating Points and Precision Pass
v Tx.Origin Authentication Pass
v Signatures Replay Pass
v/ Pool Asset Security (backdoors in the Pass

underlying ERC-20)

security@blaize.tech

Blaize.Security Synthex Smart Contact Audit

CODE COVERAGE AND TEST RESULTS FOR
ALLFILES, PREPARED BY SYNTHEX TEAM

You are using the unsafeAllow.delegatecall flag.

supply token

supply token with permit (48ms)

Rewards

deposit with depositETH

deposit by sending eth (86ms

Testing BurnFee

Burn fee

should update fee to 1%

user should be able to burn 1sETH with 10 sUSD fee (119ms)
should update fee to 01%

user2 should issue synths (113ms)

Burned fee from isserAlloc

should update fee to 1% + 50% issuer alloc

user should be able to swap 10 sETH to 10000 sUSD with 50 sUSD fee
+ 50 sUSD burned (197ms)

should update fee to 0.1% + 80% issuer alloc

user should be able to burn 1sgTH for S1000 with 2 sUSD fee + 8
sUSD burned (229ms)

Testing MintFee

S8 S S8 S LS KX

LN

Minting fee

should update fee to 1%

user should be able to mints synths (70ms)
should update fee to 01%

user2 should issue synths (1177ms)

user2 should swap 1seth to sbt

Burned fee from isserAlloc

should update fee to 1% + 50% issuer allo
user should mints synths (69ms)

should update fee to 0.1% + 80% issuer alloc
should user2 issue synths (119ms)

Testing SwapFee

CSAOCKK

S8 NS

Swap fee
v/ should update fee to 1%

security@blaize.tech m

Blaize.Security

S SN SSS S L e T SS 8NS SAS

5 NS S

Synthex Smart Contact Audit

user should be able to swap 10 sETH to 10000 sUSD with 100 sUSD fee

should update fee to 0.1%

user2 should issue synth

Burned fee from isserAlloc

should update fee to 1% + 50% issuer alloc

user should be able to swap 10 sETH to 10000 sUSD with 50 sUSD
fee + 50 sUSD burned (155ms)

should update fee to 01% + 80% issuer allo

user should be able to swap 10 sETH to 10000 sUSD
with 50 sUSD fee + 50 sUSD burned (16Ims)
Testing the complete flow

Should stake eth (56ms)

issue synths (176ms)

swap em (93ms)

update debt for users (126ms)

burn synths (316ms)

Testing liquidation

Liguidation @ 85

should not be able to liquidate if health factor is above 85% (129ms)
Liquidation @ 90

user2 liquidates userl with 1 BTC (S15000) (144ms)
user2 completely liquidates userl (125ms)

tries to liquidate again (51ms)

Liguidation @ 99.5

user2 liquidates userl with 1 BTC (S15000) (279ms)
user2 completely liquidates userl (119ms)

expect dusted account

Liquidation @ 100.5

user2 liquidates userl with 1 BTC ($20000) (139ms)
user2 completely liquidates userl (116ms)
Rewards

set pool speed

Should deposit eth (38ms)

userl and user2 issue debt (172ms)

burn after 33 days (209ms)

security@blaize.tech

Blaize.Security Synthex Smart Contact Audit

check esSYN rewards

claim rewards (62ms)

user2 burn remaining debt after 10 days (74ms)

check esSYN rewards

Testing unlocker

unlock should fail if esSYX balance is O

userl gets 1000 esSYX

userl should be able to start unlock of 100 tokens

user2 will start unlock of 250 tokens

index0: unlock after lockPeriod, 0th of unlockPeriod, expect
5% to unlock

indexl: should not able to unlock

index0: unlock after lockPeriod, 60/180 of unlockPeriod
indexl: unlock after lockPeriod, 53/180th of unlockPeriod
Testing Staking Rewards

add 10 WETH reward for 1year

userl should have 1000 esSYX

view reward APY should be 100%

user2 should stake 500 syn

view reward APY 66%

Testing seal of esSYX

lock syx

should not be able to transfer

should be able to transfer & transferFrom after getting authorized (53ms)

FTELNES N8 S8S8SS S SSASS

CAOX

67 passing (9s)

security@blaize.tech

Blaize.Security

Synthex Smart Contact Audit

TEST
COVERAGE
RESULTS

FILE % STMTS % BRANCH % FUNCS
SyntheXToken.sol 42.86 25 &0
EscrowedSYX.sol 657 39.58 69.57
Crowdsale.sol 0 0 0
BaseTokenRedeemer.sol 95.24 5714 100
SyntheXStorage.sol 100 100 100
SyntheX.sol 81.82 47.47 64.29
AddressStorage.sol 100 100 100
AccessControlList.sol Q0 50 8571
PoolStorage.sol 100 100 100
Pool.sol 80.14 48.53 7879
ERC20X.s0ol 7619 42.31 63.64

security@blaize.tech

Blaize.Security Synthex Smart Contact Audit

CODE COVERAGE AND TEST RESULTS
FOR ALL FILES, PREPARED BY BLAIZE
SECURITY TEAM

Crowdsale

constructor

start time cannot be in in the past (128ms)

start time cannot be greater than end time (129ms)
syntex cannot be zero address (125ms)

NN NN

token cannot be zero address (132ms)

whitelist buy with ether

whitelisted user can buy tokens with ether (193ms)
whitelisted user cannot unlock the same id twice (233ms)
whitelisted user cannot buy tokens with before crowdsale
start (60msg)

whitelisted user cannot buy tokens with invalid proof (84ms)
whitelisted user cannot buy tokens with for 0 ether (73ms)
whitelisted user cannot buy more tokens than whitelist
capitalization (91ms)

user canot buy tokens when contract on pause (72ms)

CAOK

AERN

unlock cannot be called while contract on pause (65ms)
whitelist buy with token

whitelisted user can buy tokens with payments tokens (186ms)
whitelisted user cannot buy tokens with paymetn tokens before
crowdsale start (53ms)

whitelisted user cannot buy tokens with invalid proof (70ms)
whitelisted user cannot buy tokens for 0 payment tokens (95ms)
whitelisted user cannot buy more tokens than whitelist
capitalization (153ms)

user canot buy tokens when contract on pause (6Ims)

NN N NS

S

pbuy with eth

user can buy tokens with ether (226ms)

user cannot buy tokens with ether before whitelist period ends (69ms)
whitelisted user cannot buy tokens with for 0 ether (6Ims)

user canot buy tokens when contract on pause (90ms)

NN NN

buy with token

user can buy tokens with payment tokens (149ms)

user cannot buy tokens with payment tokens before crowdsale
start (39ms)

security@blaize.tech

Blaize.Security Synthex Smart Contact Audit

v/ whitelisted user cannot buy tokens for 0 payment tokens (59ms)
v/ user canot buy tokens when contract on pause (58ms)

NSNS NS

& NS NSNS AA AN

CLOL KK N\

AN

admin function

endSale

admin cannot endSale after sale end (46ms)

N admin can withdraw tokens from contract (73ms)
1 admin can withdraw ether from contract (121ms)
12 admin can unpause contract (92ms)

recive works as buyWithEth function (326ms)

fallback
ERC20X

Should not mint if contract paused (44ms)

Should not .mintinternal() if sender is not Pool contract
Should not .burninternal() if sender is not Pool contract
Should not mint amount =0

Should not burn amount = 0

Should not swap amount =0

Should not liquidate amount = 0

Should update flash fee

Should not update flash fee if sender is not L1 admin
.burninternal() should work correct (270ms)

Should get flash fee from contract-inheritor (209ms)
Should get flash fee receiver from contract-inheritor 190ms)

EscrowedSYX

Initialization

Should initialize correctly (88ms)
Setters

Should set rewards duration (49ms)

Shouldn't set rewards duration if rewards period isn't completed
(127ms)

Should set rewards duration only by L2Admi

Should set lock period (67ms)

Should set lock period only by L2Admin (49ms)

Roles

Should grant and revoke AUTHORIZED_SENDER role (112ms)
Should revert when trying to grant or revoke roles without being
LIAdmin (134ms)

security@blaize.tech

Blaize.Security

NS NSA

TSNS NS AN

Synthex Smart Contact Audit

Pause/unpause

Should pause (50ms)

Should unpause (98ms)

Should pause only by L2Admin (63ms)

Should unpause only by L2Admin (78ms)

Shouldn't call specified functions when paused (111ms)
Rewards operations

Should notify reward (104ms)

Should notify reward during rewards period (166ms)
Should get amount of reward for duration (75ms)
Should get reward per token (129ms

Should get reward (157ms)

Shouldn't get reward if notifyReward was't called (105ms)
Syx operations

v Should lock (92ms)
v/ Should start unlock (122ms)
v Should claim unlocked with 3 requests (262ms)

NN NS <K

NSNS N

NS NS

Transfer operations

Should transfer esSYX only by authorized senders (147ms)
Shouldn't transfer esSYX if sender is not authorized (114ms)
Pool

enterCollateral

user can enter collateral (69ms)

user cannot enter collateral twice (69ms)

cannot enter not acitve collateral

user can exit collateral with deposited collateral (128ms)
deposit

user can deposit ERC20 (116ms)

user can deposit ETH (73ms)

user cannot deposit while contract on pause (60ms)
user can deposit collateral he hasn't entered (105ms)
user cannot deposit when collateral has exceeded
capacity (107ms)

withdraw

user can withdraw collateral (155ms)

user can withdraw ETH collateral (133ms)

user can withdraw ETH collateral as WETH (119ms)

user cannot withdraw collateral he doesn't own (125ms)

security@blaize.tech

Blaize.Security

NN

LLLOCCC X

S8 S

AN

AN

v
v

v/

Synthex Smart Contact Audit

mint

user can mint (206ms)

cannot mint with insufficient user collateral (294ms)
getAccountlLiquidity

getAccountLiquidity (435ms)

add/remove synth

add synth (55ms)

add 2 synths (76ms)

cannot add same synth twice (84ms)

only L1 admin can add synth

remove synth number 1 out of 1(84ms)

remove synth number 2 out of 2 (39ms)

only L1 admin can remove synth (75ms)

commitSwap

commitSwap one synth for anoter synth (507ms)

cannot commitswap disabled synth (45ms)

only synth can call commitswap

commitLiquidate

commitLiquidate (438ms)

PoolScenarios

Deposit/borrow/withdraw and reward calculation
Should get rewards after repay if rewards off before repay (440ms)
Should get rewards if rewards on after deposit and before repay
(527ms)

Should issue debt correctly

Should withdraw collateral amount correctly (1345ms)
Should burn debt correctly (626ms)

SyntheX

Initialization

Should initialize correctly

Setters

Should set address (44ms)

Pause/unpause

Should pause and unpause contract (70ms)

Shouldn't pause and unpause contract by everyone but L2Admin
(44ms)

Shouldn't call specified any function when paused (63ms)

security@blaize.tech

Blaize.Security Synthex Smart Contact Audit

5SS S S OSS

N

NN

Rewards operations

Should set pool speed with adding reward token to list (75ms)
Should set pool speed without adding reward token to list
(104ms)

Shouldn't set pool speed if reward token already added but param
addTolist is true (109ms)

Should remove reward token from list (100ms)

Should update pool reward index (135ms)

Should claim rewards (1210ms)

Should claim rewards with 2 pools (collecting rewards from a
pool they don't belong to) (4243ms)

Should claim rewards with 2 pools (check rewards
calculation) (3437ms)

SyntheXToken

Initialization

Should correctly initialize SyntheXToken contract

Minting

Should allow LIAdmin to mint tokens

Should not allow non-LIAdmin to mint tokens
Pause/Unpause

Should allow L2Admin to pause and unpause the

contract (77ms)

Should not allow non-L2Admin to pause and unpause

the contract (40ms)

Should not allow transfers when paused (103ms)

119 passing (29s)

security@blaize.tech m

Blaize.Security Synthex Smart Contact Audit

TEST
COVERAGE
RESULTS

FILE % STMTS % BRANCH % FUNCS
SyntheXToken.sol Q0 62.5 83.33
EscrowedSYX.sol 100 81.03 95.83
Crowdsale.sol 9697 83.87 9375
BaseTokenRedeemer.sol 96 54.55 83.33
SyntheXStorage.sol 100 100 100
SyntheX.sol 97.3 70.45 95.24
AddressStorage.sol 100 100 100
PoolStorage.sol 100 100 100
Pool.sol 93.84 59.86 87.5
ERC20X.s0ol 89.47 64.58 84.62
All files 96.36 77.68 92.36

security@blaize.tech E

Blaize.Security Synthex Smart Contact Audit

DISCLAIMER

The information presented in this report is an intellectual property
of the customer, including all the presented documentation, code
databases, labels, titles, ways of usage, as well as the information
about potential vulnerabilities and methods of their exploitation.
This audit report does not give any warranties on the absolute
security of the code. Blaize.Security is not responsible for how you
use this product and does not constitute any investment advice.

Blaize.Security does not provide any warranty that the working
product will be compatible with any software, system, protocol or
service and operate without interruption. We do not claim the
investigated product is able to meet your or anyone else’s
requirements and be fully secure, complete, accurate, and free of
any errors and code inconsistency.

We are not responsible for all subsequent changes, deletions, and
relocations of the code within the contracts that are the subjects
of this report.

You should perceive Blaize.Security as a tool, which helps to
investigate and detect the weaknesses and vulnerable parts that
may accelerate the technology improvements and faster error
elimination.

security@blaize.tech m

	Audit rating
	Auditing technics
	Complete analysis
	Contents
	Executive Summary
	Executive Summary-1
	Executive Summary-2
	Executive Summary-3
	Graph of vulnerability
	Page#3
	Page#9
	Page#9-1
	Page#9-2
	Page#9-3
	Page#9-4
	Page#9-5
	Page#9-6
	Page#9-7
	Page#9-8
	Page#9-9
	Page#9-10
	Page#9-11
	Page#9-12
	Page#9-13
	Page#9-14
	Page#9-15
	Page#9-16
	Page#11
	Page#11-1
	Page#11-2
	Page#11-3
	Page#11-4
	Page#12
	Page#12-1
	Page#12-2
	Page#12-3
	Page#12-4
	Page#12-5
	Page#12-6
	Page#12-7
	Page#13
	Page#13-1
	Page#14
	Severity Definition
	Synthe-X - scheme
	Synthe-X - scheme-1
	Synthe-X - scheme-2
	Synthe-X - scheme-3
	Synthe-X - scheme-4
	Synthe-X - scheme-5
	Synthe-X - scheme-6
	Synthe-X - scheme-7
	Title Page

