
SMART CONTRACT AUDIT

EverDues

May 4th, 2023 / v.	1.0

EverDues Smart Contact Audit

1security@blaize.tech

Table of

Contents
Audit Rating 2

Technical Summary 3

The Graph of Vulnerabilities Distribution 4

Severity Definition 5

Auditing strategy and Techniques applied/Procedure 6

Executive Summary 7

Complete​ Analysis 11

Protocol Overview 9

Code Coverage and Test Results for All Files (Blaize Security) 18

Disclaimer 21

Test Coverage Results (Blaize Security) 20

EverDues Smart Contact Audit

2security@blaize.tech

SCORE 10 /10

audit

rating

The scope of the project includes EverDues’ set of contracts:

Initial commit:

Branch: main

Repository:

https://github.com/EverDues/evm-smart-contracts

e3b5b571539205ef0fc3f84b29b392d7af4c75d4

047bad18c740cc4ee2899fc08b590ef3721e727b

contracts\

MultiOwnable.sol

RecurringPayments.sol

Final commit:

EverDues Smart Contact Audit

3security@blaize.tech

Technical

summary

Testable code

During the audit, we examined the security of smart contracts for
the EverDues protocol. Our task was to find and describe any
security issues in the smart contracts of the platform. This report
presents the findings of the security audit of the EverDues smart
contracts conducted between April 27th, 2023 and May 3rd, 2022.

The code is 100% testable, which is above
the industry standard of 95%.

The scope of the audit includes the unit test coverage, which is
based on the smart contract code, documentation, and
requirements presented by the EverDues team. The coverage is
calculated based on the set of Hardhat framework tests and
scripts from additional testing strategies. However, to ensure the
security of the contract, the Blaize.Security team suggests that the
EverDues team launch a bug bounty program to encourage further
active analysis of the smart contracts.

INDUSTRY STANDARD

your average

100%75%50%25%0%

EverDues Smart Contact Audit

4security@blaize.tech

Critical

High

Medium

Low

Lowest

1

1

0

4

2

FOUND

1

1

0

4

2

FIXED/VERIFIED

The table below shows the number of the
detected issues and their severity. A total of 8
problems were found. All 8 issues were fixed or
verified by the EverDues team.

50%

25%

13%

12%

The graph of
vulnerabilities
distribution:

critical

high

medium

low

LOWest

EverDues Smart Contact Audit

5security@blaize.tech

Severity Definition

The system contains several issues ranked as very
serious
and dangerous for users and the secure 
work of the
system. Requires immediate 
fixes and a further check.

Critical

The system contains a couple of serious issues, which 
lead to unreliable work of the system and migh 
cause
a huge data or financial leak. Requires immediate
fixes and a further check.

High

The system contains issues that may lead to
medium financial loss or users’ private information
leak. Requires
immediate fixes and a further
check.

Medium

The system contains several risks ranked as relatively 
small with the low impact on the users’ information 
and financial security. Requires fixes.

Low

The system does not contain any issues critical to the 
secure work of the system, yet is relevant for best
practices.

Lowest

EverDues Smart Contact Audit

6security@blaize.tech

Auditing strategy and
Techniques applied/Procedure

We checked the contracts for the following parameters:

Procedure

Whether the contract is secure;

Whether the contract corresponds to the documentation;

Whether the contract meets the best practices in the efficient use of
gas, code readability.

We scanned the smart contracts for commonly known and more
specific vulnerabilities:

Unsafe type inference;

Timestamp Dependence;

Reentrancy;

Implicit visibility level;

Gas Limit and Loops;

Transaction-Ordering
Dependence;

Unchecked external call -
Unchecked math;

DoS with Block Gas Limit;

DoS with (unexpected) Throw;

Byte array vulnerabilities;

Malicious libraries;

Style guide violation;

ERC20 API violation;

Uninitialized state/storage/ 
local variables;

Compile version not fixed.

Automated analysis:

We scanned the contracts using several publicly available
automated analysis tools such as Mythril, Solhint, Slither, and
Smartdec. All issues found were verified manually.

Manual audit:

We manually analyzed the smart contracts to identify potential
security vulnerabilities. Our analysis involved a comparison of the
smart contract logic with the description provided in the
documentation.

EverDues Smart Contact Audit

7security@blaize.tech

Executive

summary

 Blaize Security team has conducted the audit for the EverDues
protocol. The protocol represents a platform for recurring
payments and subscriptions. It utilizes ERC-20 tokens to pay for
subscriptions and the payment is executed automatically. All it
needs from the user is to approve tokens to the protocol in
advance.

 The objective of the audit was to assess the security of smart
contracts against the list of common vulnerabilities as well as
against the auditors’ internal check-list, check that contracts are
optimized in terms of gas consumption, and validate the security of
users’ funds. This includes verifying the protocol can spend only a
certain amount of a particular token to the correct destination
address in a correct period. From the protocol’s perspective, it
needed to be validated that users can avoid payments and that
fees are properly collected.

 The audit discovered one critical, one high, and several low and
lowest issues. The critical issue was found in the access control
contract, MultiOwnable. The issue occurred because the default
admin role of AccessControl.sol was neither granted nor changed
to another owner role in the constructor. The EverDues team has
successfully fixed this issue by granting a default admin role to the
deployer of the contracts. The high issue was connected to the
possibility for users to avoid the first payment of the subscription.
The issue occurred because the ID of the subscription was
generated off-chain without validating the input parameters. Thus,
users could have passed invalid parameters while creating a
subscription and avoided the first payment while still creating a
valid subscription. The EverDues team has also successfully fixed
this issue by generating the subscription id on-chain based on
input parameters.

EverDues Smart Contact Audit

8security@blaize.tech

 Other issues were connected to the lack of validations, usage of
custom errors, visibility of variables, and the validation of business
logic. The EverDues team has successfully fixed or verified all of the
issues.

 The overall security of the protocol is high-enough. Contracts are
well-written, contain a sufficient natSpec, and have additional
documentation. The Blaize Security team carefully checked the
flow of subscriptions with additional tests. Once the EverDues team
has applied all the fixes, the smart contracts have passed all the
security tests. It should also be noted that based on the protocol's
logic, one user should have only one subscription. While there are
no such restrictions in the smart contracts, the EverDues team has
verified that it will be checked in the dApp, and users will only be
able to have one valid subscription.

Security

Gas usage and logic optimization

Code quality

Test coverage

Total

9.9

10

10

10

10

RATING

EverDues Smart Contact Audit

9security@blaize.tech

E v e r D u e s c o n t r a c t

RecurringPayments.sol

EverDues is a protocol that enables users to pay for subscriptions using crypto. Users can create

subscriptions, which will then be used to pay for using crypto.

Cancel subscription

User

cancelSubscription()
Create subscription id

and check that it is
active

Set zero to subscriptions
mapping by sid

Emit
SubscriptionCancelled

event

address _token -- token
used to pay for the

subscription.

address _payee -- address
to send subscription

payments to.

uint32 _period --
subscription period.

string calldata
_ipfsHash -- IPFS hash of

external data.

uint32 _value -- cost of
the subscription.

Create subscription

User

createSubscription() Create subscription id Check that subscription
is not active

Set timestamp to
subscriptions mapping

by sid

Payee Transfer tokens from
user to _payee

Emit NewSubscription
event

address _payee -- address
to send subscription

payments to.

uint32 _value -- cost of
the subscription.

string calldata
_ipfsHash -- IPFS hash of

external data.

address _token -- token
used to pay for the

subscription.

uint32 _period -- period
of subscription

EverDues Smart Contact Audit

10security@blaize.tech

E v e r D u e s c o n t r a c t

RecurringPayments.sol

Execute payment

Owner

batchExecutePayment() executePayment()

For every payment Create subscription id

Check that period
is not 0

Calculate elapsedTime
(time now - creating subs

time)

Check that elapsedTime
is more than

preprocessingWindow

executePayment() Check that subscription
is valid

Check that _payeeFee is
not more than

MAX_NETWORK_FEE

Calculate
preprocessingWindow

Calculate payeeFeeAdd _period to
subscription time

Transfer _value -
payeeFee to _payee

Transfer payeeFee to
gas proxy address

Emit SubscriptionPaid
event

address _customer --
customer address to send

subscription payments
from.

address _token -- token
used to pay for the

subscription.

address _payee --
address to send

subscription payments to.

uint32 _value -- cost
of the subscription.

uint32 _period --
subscription period.

uint8 _payeeFee --
transaction gas fee.

string calldata _ipfsHash
-- IPFS hash of external

data.

PaymentData[] calldata
payments -- list of

payment information.

PayeeGas_proxy_address

Transfer tokens to payeeTransfer Fee to gas proxy

EverDues Smart Contact Audit

11security@blaize.tech

Complete​ Analysis

MultiOwnable.sol

In the AccessControl contract from Openzeppelin, the main role by
default is DEFAULT_ADMIN_ROLE, which controls other roles. The
function grantRole() checks not the case where the sender has the
same role but the role that controls granting role. In the
MultiOwnable contract addOwner() and removeOwner() functions
will revert because no DEFAULT_ADMIN_ROLE was set. In the
constructor, default admin should be granted to at least one
account, or the admin role should be changed using the
_setRoleAdmin() function. This issue is marked as critical since, as
for now, only one account has an OWNER_ROLE. However it is
unable to set new owners, which doesn’t correspond to the logic of
smart contracts.

The default admin is not set.

Grant the DEFAULT_ADMIN_ROLE to msg.sender OR set the admin
role for the OWNER_ROLE role.

Post-audit:

The default admin is set in the constructor. The addOwner() and
removeOwner() functions can only be invoked if the user has both
DEFAULT_ADMIN_ROLE and OWNER_ROLE. DEFAULT_ADMIN_ROLE
also can avoid checking on owners in the removeOwner() function
by calling the revokeRole() function. According to the EverDues
team, such functionality is intended as DEFAULT_ADMIN_ROLE is
similar to super admin, which can avoid the validation.

Recommendation:

Critical-1 Resolved

EverDues Smart Contact Audit

12security@blaize.tech

RecurringPayments.sol: createSubscription().

Since the hash of s̀id ̀consists of certain important parameters
such as token, payee, and value, it is important to ensure that
these parameters are actual when a subscription is created.
However, during the subscription creation, parameters ̀_payee,̀ ̀
_value,̀ and _̀token ̀are not validated to be part of s̀id.̀ This happens
since one part of s̀id ̀is passed as a preprocessed hash _̀sid.̀ As a
result, if a malicious actor calls the function directly, he can pass a
valid _̀sid,̀ but other parameters will be invalid to avoid the first
payment.

Parameter _̀ipfsHash ̀ is also not validated. As this parameter is
passed to the event NewSubscription which can be essential for
the protocol, it is also suggested to validate that it is a part of s̀id.̀

The first payment can be performed with a wrong token/wrong
quantity/to wrong payee.

Either form ̀_sid ̀inside of the function instead of passing a
preprocessed hash OR consider restricting the function so that
only authorized members of the protocol can call it and ensure
that all the parameters are valid (e.g., backend).

Post-audit:

 ̀_sid ̀ is now created inside the function instead of processing it off-
chain. Thus, the first payment is performed correctly.

Recommendation:

High-1 Resolved

EverDues Smart Contact Audit

13security@blaize.tech

RecurringPayments.sol: batchExecutePayment().

Using batchExecutePayment() could cause a transaction to revert
if one subscription does not pass the executePayment()
requirement. For example, if 10 payments are passed to the
function, 9 payments are valid, and 1 payment is invalid (e.g.,
canceled), then all 10 payments will not be executed.

Batch executes payment could revert if one subscription is false.

Verify that passed payments are valid without reverting the whole
transaction OR verify that such logic is intended.

Post-audit:

Since an owner invokes the batch function, every subscription will
be checked before function execution.

Recommendation:

Low-1 Resolved

RecurringPayments.sol: cancelSubscription().

When a user cancels a subscription, it is not checking if this
subscription was created. In this case, it is better to check if the
subscription is valid and could be canceled to avoid cases where a
user has made a tiny mistake in passed parameters and canceled
a wrong subscription, thinking that he canceled the subscription
he intended to cancel.

Subscription is not checked when canceling.

Check the subscription before canceling.

Post-audit:

The subscription is now checked to be valid before canceling.

Recommendation:

Low-2 Resolved

EverDues Smart Contact Audit

14security@blaize.tech

RecurringPayments.sol

The gas proxy address is zero address after the contract
deployment. If no changes are made, the executePayment()
function will always revert, or fee tokens will be burned (transferred
to zero address). To ensure everything will work as expected,
variables should be set in the constructor.

 ̀gas_proxy_address ̀ is not set in the constructor.

Initialize the gas_proxy_address variable in the constructor of the
RecurringPayments contract.

Post-audit:

The gas_proxy_address is now set in the constructor.

Recommendation:

Low-3 Resolved

RecurringPayments.sol.

By default, all variables have internal visibility when it is not marked
explicitly. However, it is recommended to mark the visibility
explicitly, even if it has to be private.

Variables and constants visibility is not marked explicitly.

Add visibility to variables.

Post-audit:

The visibility of variables was added.

Recommendation:

Low-4 Resolved

EverDues Smart Contact Audit

15security@blaize.tech

RecurringPayments.sol: createSubscription(), line 62,
executePayment(), lines 109-111, 114.

MultiOwnable.sol: onlyOwner(), line 14, removeOwner(), line 23

Starting from the 0.8.4 version of Solidity it is recommended to use
custom errors instead of storing error message strings in storage
and use “require” statements. Using custom errors is more efficient
in terms of gas spending and increases the code readability.

Custom errors should be used.

Use custom errors.

Post-audit:

Custom errors are used now.

Recommendation:

Lowest-1 Resolved

EverDues Smart Contact Audit

16security@blaize.tech

RecurringPayments.so
 It is not fully clear how the user flow in the protocol is working. As

for now, it looks like this: The user creates a subscription -> pays
for the creation -> the admin executes the user subscription ->
the user pays for the subscription again. What will happen if the
user wants a different period, should a new subscription be
created and the old one be canceled? If the user cancels the
subscription before execution, should he get a refund?

 It is also not yet clear how the protocol handles users'
approvals, necessary for the function batchExecutePayment(). It
could be the time when the user can revoke his approvals to
protocol, and in this case executePayment() function will revert.
It is not safe to ask users to approve the maxUint value.

The first part of the issue is not a security issue but rather a
validation of user flow. At the same time, the second part can be a
problem for the protocol if the user doesn’t grant approval in time
or a security issue for users if they are asked to grant unlimited
allowance to the protocol.

Unclear payment/period process.

Clarify the flow of the subscription process and validate how
approvals will be granted on the platform.

Post-audit:

The EverDues team has verified that the subscription can’t be
upgraded by design. For value/period changes, users need to
unsubscribe and subscribe to a different plan. This UI/UX is
handled on the frontend. Subscribing more than once to the same
destination address through the UI is impossible. They stated that
the user only must delete and subscribe again.

Recommendation:

Lowest-2 Verified

EverDues Smart Contact Audit

17security@blaize.tech

Re-entrancy

Arithmetic Over/Under Flows

Access Management Hierarchy

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Delegatecall Unexpected Ether

Hidden Malicious Code

Default Public Visibility

External Contract Referencing

Entropy Illusion (Lack of Randomness)

Unchecked CALL Return Values

Short Address/Parameter Attack

Race Conditions/Front Running

Signatures Replay

Tx.Origin Authentication

Pool Asset Security (backdoors in the
underlying ERC-20)

General Denial Of Service (DOS)

Floating Points and Precision

Uninitialized Storage Pointers

contracts\

MultiOwnable.sol

RecurringPayments.sol

18security@blaize.tech

MultiOwnable

Sets the deployer as the initial owner when initialization

Adds a new owner (96ms)
Prevents non-owners from adding a new owner (55ms)

Removes an owner (47ms)
Prevents non-owners from removing an owner
Prevents removing the last owner (62ms)

RecurringPayments

Sets the deployer as the initial owner

Creates a new subscription and transfers the subscription cost (103ms)
Reverts if an active subscription already exists (73ms)

Cancels an existing subscription (68ms)
Reverts if the subscription does not exist

Executes a subscription payment and transfers the subscription cost
and network fee (87ms)
Calculates the preprocessing window correctly (88ms)
Reverts if the subscription does not exist or has been cancelled
Reverts if the subscription period is zero (lifetime subscription) (58ms)
Reverts if the network fee is more than the maximum allowed
network fee (63ms)
Reverts if the subscription has already been paid for this period (65ms)

Generates a unique subscription ID based on the given parameters

Retrieves the timestamp of the last payment for a subscription (57ms)

EverDues Smart Contact Audit

Code coverage and test results
for all files, prepared by blaize
security team

19security@blaize.tech

Sets the gas proxy address
Reverts if the caller is not the owner (47ms)

Reverts if the caller is not the owner (83ms)

EverDues Smart Contact Audit

EverDues Smart Contact Audit

20security@blaize.tech

FILE

contracts\

MultiOwnable.sol

RecurringPayments.sol

All files

100

100

100

100

% STMTS

100

100

100

100

% BRANCH

100 100

100

100 100

100

100

100

% FUNCS % LINES

Test

coverage

results

EverDues Smart Contact Audit

21security@blaize.tech

Disclaimer
The information presented in this report is an intellectual property
of the customer, including all the presented documentation, code
databases, labels, titles, ways of usage, as well as the information
about potential vulnerabilities and methods of their exploitation.
This audit report does not give any warranties on the absolute
security of the code. Blaize.Security is not responsible for how you
use this product and does not constitute any investment advice.

Blaize.Security does not provide any warranty that the working
product will be compatible with any software, system, protocol or
service and operate without interruption. We do not claim the
investigated product is able to meet your or anyone else’s
requirements and be fully secure, complete, accurate, and free of
any errors and code inconsistency.

We are not responsible for all subsequent changes, deletions, and
relocations of the code within the contracts that are the subjects
of this report.

You should perceive Blaize.Security as a tool, which helps to
investigate and detect the weaknesses and vulnerable parts that
may accelerate the technology improvements and faster error
elimination.

