Blaize.Security

May 2nd, 2023 /V.1.0

€O everstake

EVERSTAKE
SMART CONTRACT AUDIT

Blaize.Security Everstake Smart Contact Audit

TABLE OF
CONTENTS

Audit Rating 2
Technical Summary 3
The Graph of Vulnerabilities Distribution 4L
Severity Definition 5
Auditing strategy and Techniques applied/Procedure 6
Executive Summary 7
Protocol Overview 9
Complete Analysis 20
Code Coverage and Test Results for All Files (Everstake) 34
Code Coverage and Test Results for All Files (Blaize Security) 37
Test Coverage Results (Blaize Security) 49
Disclaimer 51

security@blaize.tech n

Blaize.Security Everstake Smart Contact Audit

AUDIT
RATING

SCORE 9.8/10

The scope of the project includes Everstake’s set of contracts:

AutocompoundAccounting.sol WithdrawTreasury.sol

CommonAccounting.sol utils\OwnableWithSuperAdmin.sol
Pool.sol utils\Math.sol

Accounting.sol structs\ValidatorlList.sol
RewardsTreasury.sol structs\StakerAccount.sol
TreasuryBase.sol structs\WithdrawRequests.sol

Withdraower.sol

Repository:
https://github.com/everstake/ETH-Staking-B2C-SC
Branch: main

Initial commit:

B 939cde350eda39l0a4sedb5c469eblbb556c8ac775

Final commit:

B 2e0235308a55cc3b496e6afc590971071378a7cd

security@blaize.tech n

Bla IZB.SGCUI’Ity Everstake Smart Contact Audit
e

TECHNICAL
SUMMARY

During the audit, we examined the security of smart contracts for
the Everstake protocol. Our task was to find and describe any
security issues in the smart contracts of the platform. This report
presents the findings of the security audit of the Everstake smart
contracts conducted between April 10th, 2023 and Apri 27th, 2023.

Testable code
0% 25% 50% 75% 100%

The code is 94% testable, which almost
corresponds to the industry standard of 95%.

The scope of the audit includes the unit test coverage, which is
based on the smart contract code, documentation and
requirements presented by the Everstake team. The coverage is
calculated based on the set of Hardhat framework tests and
scripts from additional testing strategies. However, to ensure the
security of the contract, the Blaize.Security team suggests that the
Everstake team launch a bug bounty program to encourage
further active analysis of the smart contracts.

security@blaize.tech B

Blaize.Security

Everstake Smart Contact Audit

THE GRAPH OF
VULNERABILITIES
DISTRIBUTION:
B crmca
84%
HIGH
MEDIUM
LOW
LOWEST
The table below shows the number of the
detected issues and their severity. A total of 12
problems were found. 12 issues were fixed or
verified by the Everstake team.
FOUND FIXED/VERIFIED
Critical 1 1
High 0 0
Medium 1 1
Low 0 0
Lowest 10 10

security@blaize.tech

Blaize.Security Everstake Smart Contact Audit

SEVERITY DEFINITION

Critical

The system contains several issues ranked as very
serious and dangerous for users and the secure
work of the system. Requires immediate

fixes and a further check.

High

The system contains a couple of serious issues, which
lead to unreliable work of the system and migh

cause a huge data or financial leak. Requires immediate
fixes and a further check.

Medium

The system contains issues that may lead to
medium financial loss or users’ private information
leak. Requires immediate fixes and a further
check.

Low

The system contains several risks ranked as relatively
small with the low impact on the users’ information
and financial security. Requires fixes.

Lowest

The system does not contain any issues critical to the
secure work of the system, yet it is relevant for best
practices.

security@blaize.tech B

Blaize.Security Everstake Smart Contact Audit
——

AUDITING STRATEGY AND
TECHNIQUES APPLIED/PROCEDURE

We have scanned this smart contracts for commonly known and
more specific vulnerabilities:

= Unsafe type inference; = DoS with Block Gas Limit;
= Timestamp Dependence; = DoS with (unexpected) Throw;
= Reentrancy; = Byte array vulnerabilities;
= Implicit visibility level; = Malicious libraries;
= Gas Limit and Loops; = Style guide violation;
= Transaction-Ordering = ERC20 API violation;
Dependence; = Uninitialized state/storage/
= Unchecked external call - local variables;
Unchecked math; = Compile version not fixed.
Procedure

We checked the contracts for the following parameters:

= Whether the contract is secure;

= Whether the contract corresponds to the documentation;

= Whether the contract meets the best practices in the efficient use of
gas, code readability.

Automated analysis:

Scanning contracts by several publicly available automated
analysis tools such as Mythril, Solhint, Slither, and Smartdec.
Manual verification of all the issues found with tools.

Manual audit:

Manual analysis of smart contracts for security vulnerabilities.
We checked smart contract logic and compared it with the one
described in the documentation.

security@blaize.tech n

Blaize.Security Everstake Smart Contact Audit

EXECUTIVE
SUMMARY

The Blaize Security team has conducted an audit of the
Everstake B2C protocol. Everstake is a protocol that allows users to
stake their ETH to receive rewards. It uses a list of validators, and
each is registered as an Ethereum validator by staking 32 ETH
under him. For example, if 100 users have stake of 32 ETH in total, the
protocol sends 32 ETH to the Beacon deposit smart contract to
register one validator on the list.

The audit's goal was to verify the security of staking, withdrawal,
and collection of rewards mechanisms and validate the security of
users’ funds. Also, audit smart contracts against the list of common
vulnerabilities as well as our internal checklist, and check that
contracts are optimized in terms of gas usage.

During the audit, a critical issue was identified regarding access
control. Thus, it was pointed out that anyone could set the super
admin account while the super admin was equal to zero address.
In this case, a malicious actor could have been monitoring the
mempool to search for deployment or setting super admin to zero
address and using a front-run attack to set his address. The
Everstake team has successfully fixed the issue.

The other issues were connected to iteration through the whole
storage array, lack of events, and several gas optimizations. All of
them were successfully fixed as well.

The overall security of smart contracts is high enough: they have
passed all the security checks. However, the implementation of
smart contracts is complex and lacks documentation.
Nevertheless, the Blaize Security team has thoroughly tested the
whole set.

security@blaize.tech

Blaize.Security Everstake Smart Contact Audit

RATING
Security 9.8
Gas usage and logic optimization 10
Code quality 9.5
Test coverage 99
Total 9.8

security@blaize.tech n

Blaize.Security

Everstake Smart Contact Audit

Pool.sol

Pool is a contract where users can stake ETH if the

User
amount satisfies their minimum staking amount. The L J
contract interacts with the Accounting contract to l
make records of users, their stakings, and withdrawals. bool isAutocompound F]
-- boolean flag for stake()
staking with or without
. : autocompound. L .
User flow: User stakes ETH using stake function() -> : FpoUnd l
withdraws using unstake() function.))
Governor is a manager of the contract, who manages Check that msgvalue is
)) : more than minimal
validators, controls pauses, staking/withdraw, sets the stake amount
minimum staking amount, and sets a new governor.) J .
R e e e e . i
i _stake() [ValidatorList.sol [
: address staker -- user | r 7
| address that wants to _stake() ! List storage set -~ list !
: | Btuke : of validator elements !
| | = < |
I vl« ! T |
| i r = | |
IAccounting.deposit() -> 1 ;
| &
| uint256 value -- (interchangedAmount, — shift() '
| amount of ETH to stake activatedslots) I I
L | - - |
| | L |
| | - a0
I r ! Check that validatoris | !
| bool [s&utocompound - | not pending I
' boolean flag for staking with S 1
i | orwithout autocompound. | I |
[if | r -
I EUg interchanged false] Return validator info !
i Amount > 0 i and public key i
I - . I
: | |
: Send interchange] [For every uctlﬁmed&lots - i
validatorsReqgistry().shift &
: damount to Treasury J R g ep?osl%{] iftf) ~
| L .
|
| ETH Transfer l
|
7 = =
| §
| Treasury contract Emits StakeAdded
I event
| L -
|
T
| _deposit :
| ValidatorList ValidatorList |
| Elernent storage _deposit |
[validator -- validator info
]]
I - = I
i sl an Emit —
I I
pendingValidatorPubKey ;
- validator's public key StakeDeposited :
I = =
i l ETH :
Il Transfer I
[Deposit ETH to
i Deposit contract
i Deposit contract |
I e . I
I I

security@blaize.tech

Blaize.Security

Everstake Smart Contact Audit

Enum.UserAccount

~ userAccount --

information of user
uint256 amount --

amount of ETH to
unstake

ValidatorList.sol

!

validator elements

DepositData calldata
validator -- validator's
public key, signature
and deposit data root

List storage set -- list of

User

e

unstakePending()

Check that
amount > 0

L

lAccounting.withd
rawPending()

N

Transfer ETH to
msg.sender

b

Emit
StakeCanceled

Check that validator

is not set yet
Add validator info
to set

" uint256 value -- amount |
of ETH to unstake

[bool isAutocompound |
-- boolean flag for

unstaking with/out
autocompound

A

false

Transfer
unstakeFromPending
Value to msg.sender

ValidatorList.Deposit
Data[] calldata
pendingvalidators --
information about
validators

User

b

unstake()

e

lAccountingwithdraw()
->unstakeFrom

PendingValue

If
unstakeFrom
PendingValue

Governor

I

setPending
Validators()

Check every

validator to have
valid credentials.

public key length

signature length
== 095

Add validator using
_validatorsRegistry().

add()

true

security@blaize.tech

Everstake Smart Contact Audi

Blaize.Security

EVERSTAKE

; o

S NS

A 8= mm .M =D
ol @ L mI

m (Y mm 5 mE e -ﬂ 5 D-W
W ? .mm Ed mm ? m 7 mam
o..m .mu 2 m.m

£ .hmm £ 5E

= Rm

c
o 2% 2 £
= o m\w..w oo g
g £5 23 2% g g
5 — 85— 55 — §5 > 8 — 3
g 82 2c g g S
o} 5o 20 B g @
& 5% 2 g

c ©
68 5 3

ValidatorList.sol

security@blaizetech

Blalza.Securlty Everstake Smart Contact Audit

EVERSTAKE

Pool.sol

pausestaking()

pauseWithdraw()
N ~
Change pause staking Change pause
variable. withdraw variable.
; setMinStakeAm
setGovernor() s
g W
Emit Changes
GovernorChanged MIN_STAKE_AMOUNT
_POSITION to new
amount
N
Changes A
GOVERNOR_POSITION
to new address lAccounting.setMin
i StakeAmount()
Return true

security@blaizetech m

Blaize.Security

Everstake Smart Contact Audit

Withdrawer.sol

address staker -- ,
address of user.

N

uint amount -- amount
to withdraw

re

RequestsContainer
storage requests --

WithdrawReguest
memory request --
withdraw info

_addWithdrawRe
quest()

N

Get Withdraw
RequestQueue and
stakerWithdrawRequest

L

stakerWithdraw
Request.add()

b

Add amount to
stakerWithdrawRequest

W

Add amount to
withdrawRequestQueue

ValidatorList.sol

o

quest info

!

Withdrawer is a contract for storing withdrawal requests for ETH from Pool.
The contract stores information about the date of request and when withdraw was claimed.

uint256 amount --
amount of tokens to
withdraw

add()

N

Add request to
requests list

_interchangeWith
drawl()

Get
withdrawRequestQueue
Get
interchangedAmount
usingMath.min
(withdrowReguestQueue.

allowedIntercharge
Amount, amount)

Subtract interchanged
Amount from
allowedintercharge
Amount
Add

interchangedAmount
to filledAmount

L

Return

interchangedAmount

security@blaize.tech

B'Q]Z@-sacurlty Everstake Smart Contact Audit

EVERSTAKE

Withdrawer.sol

stakerWithdraw
(Request.claim()

b
Add claimed
Amount to
withdrawRequestQueu
e.claimedAmount

b

Send ETH from
Treasury to staker

ValidatorList.sol

.

| |
| !
| |
| |
I I
| |
| |
I I
| |
| |
| |
| |
| |
| |
| Calculate |
| claimableAmount by |
: actualFilledAmount - :
i requests._values[il.afte 1
| rFilledAmount |
| |
| |
i i
I I
| I
I |
| I
I I
I I
I I
I I
I I
| I
I I
| I
I I
i i
| |
I I

b 4
Add claimableAmount
to claimedAmount

L
Subtract

«—— claimableAmount from
requests._values[ilvalue

Return claimedAmount

security@blaizetech

Everstake Smart Contact Audi

Blaize.Security

EVERSTAKE

RewardTreasury is a contract for storing staked ETH.

RewardTreasury.sol

| |
| |
_ _
_ s _
| _D._m |
_ g8 |
e €
_ 2 28 _
| 3 53 |
| 4] #a I
| o £ I
| g8 |
| m |
| |
| |
| I
" T !
“ | | “
| |
I ! ! I
| | Y 2 | |
I ! @ ! I
i ! of o 2 ! i
	. 3 3 5	
	‘ E3 i 4	
	8 — 88 Akt	
	3 52 % 52	
	=] 3 5 I	
	ﬁ -	
I ! = & ! I		
	!	
! !		
1 ! ! 1		
1 ! ! 1		
1 [1	
[!		
[!		
@		
s)		
I = 2 _ _ I		
= ° m		
_ § — g 8 _ _		
=] m)	
_ . 5 8 _ _		
_ 3 e _ _		
[
	o	
_ - _ _		
I		1
1		1
_ i		
I		

security@blaizetech

Blaize.Security Everstake Smart Contact Audit
——

Accounting basic flows

Admin is assumed to be Pool.

- - Updates the active

E staker to the active
Subtraction of the fOURA.

dmin ‘Aecounting. retes
update()’ ‘|‘
l Mints pending amounts
& - for all stakers.
‘Accounting.deposit()’
A |
l , Activation of
= - g = i : the round
s the pending deposi
Updates the ‘Accounting._update()’ amount to the pending !
current balances. total share !
* I
! Resets the pending
: total amount.
U [, . Adds the pending :
|
|

Updates the total share

interchanged amount
with the pending amount.

from the deposit

"

|
|
Updates staker's |
|
I

k4

Caleulates the
interchanged amount.

I

[

|

|

|

|

|

| pending balance and
|

|

Updates the withdrawal data : [

|

|

|

|

|

|

|

|

|

C

active round.

and the total share.

Subtracts the interchanged
amount from the deposit

amount, Autocompound flow

Updates staker's

autocompound
Updates the pending pending balance,
restaked value.
Adds the origin amount to - -
the autocompound total T

Splits large deposits into Recursive alidite. = =

5°"gzzi:?;legggﬁit;:$:1me call. Mints an autocompound

: share to the staker and

NO updates the autocompound

total share.

— | T

+ Is the r
Pending deposit depositing YES
Is the < account the e
< autocompound?) reward Autocompounds.
tredsury?

Updates staker's
balance.

T : -

‘Accounting._

[

Refreshes the balance autocompound()
Refrashes staker's of the reward treasury.
rewards. L .
YES

security@blaize.tech m

Blaize.Security Everstake Smart Contact Audit
——

‘Accounting :update of the current balances.

‘Accounting._ RewardsTreas
update() ury.sendEth()’

!

|

|

|

|

|

|

|

|

|

|

|

|

|

|

: Uses a necessary
| number of validators
|
]
]
|
|
|
|
|
|
]
|
]
|
]
]
I

J Calculates the current
for the charged the reward treasury to — the total deposit;
gﬂlféf;‘t‘-‘&h 1 the withdrawal treasury. — the total unclaimed reward;
and adds the : '
oty — the total unclaimed fee.

| | l

Updates these

I
I
I
I
I
|
|
|
|
|
|
I
|
I
I
I
Sends the amount from balances: !
]
]
I
]
I
|
|
|
|
|
balances. i
]
]
I

‘Accounting’: autocompound Claim of rewards

‘Accounting._auto Staker
compound()’
. W - - N -
‘Accounting._update()’ Upd Ort)islcmz‘::f”e fat AQSS;;E:{?- ‘Accounting.claim()’
= N = = N =
R‘;gf‘::g: ;I;e Updates the total
the reward treasury. depiosit balance,
b

w

Claims rewards of

= = Is treasury's the staker.
NO reward amount L i
Returns € less than the >
minimum stake
= FS = amount?) 4 }
Updates the total
deposit balance and
[7 l YES the unclaimed
Emits the reward value.
autocompound event. Subtracts the rewadrd
L s . amount from the total

deposit balance and
the unclaimed reward

l

amount. Sends rewards in
Ether to the staker
Restakes the reward] J from the reward
amount to the reward (€ treasury.
treasury. J L E

security@blaize.tech

Blaize.Security Everstake Smart Contact Audit

——
Withdrawal
r 7 Input parameters:
Admin 1. Address of the staker.
2. Amount to be withdrawn.
- l £ 3. Is the autocompound?
‘Accounting.
withdraw()’
l Adds the pending withdrawal
= = A amount to the amount
Updates the current 'Accounting._ wlthdrawncfnr%r:r:?e pending
balances. update() L T - il
Requires that a sum of the
- ; calculated autocompound
NO amounts is greater than or equal
< [lstheauto- ™~ 4 Updates the to the withdrawal amount.
compound? current balances. L
| ves A i
- = i]
]
. : H .
Autocompounds .:ccountmg.anl : Wlthdrc:wgl from the treasury's
gumocompoun i and pending balances
= = = |
l | =
I
= ! Subtracts the amount from
Requires that the withdrawal | the buldnce.
amount to be less than or Updates the : - T -
equal to the autocompound current | - -
' Requires that the amount is
balance). \ less than or equal to the
= ! balance.

T YES

Autocompound withdrawal

Withdrawal from the
autocompound balance

Is the amount, withdrawn
< from the reward treasury's >—/
pending balance, greater

than zero?

Requires that the autocompound
share to be greater than zero.

. i —

Subtracts the amount from
the balance.

h 1]

Reguires that the amount is
less than or equal to the
balance.

T ves

Is the amount, withdrawn —

-a’:: from the reward treasury's
Subtracts the withdrawn amount ' balance, greater than
from the pending restaked zero?

[
amount. |
|

Calculates the amount to be withdrawn
from the deposited amount and the
amount to be withdrawn from the
pending amount.

Decreases the autocompound

share, share index and total
share.

I
]
]
]
]
]
]
]
]
]
]
]
]
]
]
|
|
|
|
|
|
|
|
|
|
|
|
|
I
I
I
I
I
]
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
: balance (the withdrawable halances.
I
I
I
I
I
I
I
|
]
|
]
|
I
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
I
I
I
I
I
I
I
I
I
I
I
I
I
I

security@blaize.tech m

Blaize.Security

Everstake Smart Contact Audit

Withdrawal of pending rewards

Admin
+ Input parameters:
‘Accounting. 1. Address of the staker.

2. Type of the user account.
3. Amount to be withdrawn
from the pending.

withdrawPending()'

L

Updates the current

Accounting._update()’
balances. o 0

L

Requires that the
amount to withdraw to
be less than or equal to
the pending total share,

which is not zero.

l

Subtracts the
amount from the
pending total share.

!

rewards.

!

Is staker's
pending balance
< greater than or
equal to the
withdrawal
amount?

l YES

Subtracts the amount
from the staker's
pending balance.

Is the user Is the user YES
< account > 3 < account > N
common or autocompound
total? or total?
l YES
Refreshes staker's NO

Requires that the
amount (after
subtractions) to be
equal to zero.

NO

Subtracts the staker's
pending balance
from the amount.

Resets the staker's
pending balance.

Refreshes the balance of
the reward treasury.

l

Requires that the treasury's
pending balance to be
greater than or equal to the
withdrawal amount

l

Subtracts the amount
from the staker's
autocompound balance.

l

Resets the amount.

security@blaize.tech

Blaize.Security Everstake Smart Contact Audit

COMPLETE ANALYSIS

The super administrator can be set by anyone when it is equal to
zero address.

OwnableWithSuperAdmin.sol: setSuperAdmin().

The state variable _superAdmin’ of the contract
OwnableWithSuperAdmin' is not set in the initializer. The function
setSuperAdmin()’ can be called by anyone when ~superAdmin’ is
equal to zero address.

OwnableWithSuperAdmin' is inherited by Pool'and Accounting,
and can be inherited by another contract as this contract is an
utility one. Pool is not required when the initialization of the super
administrator should be set and has the vital modifier
onlyGovernor() to which the administrator has access.

An intruder can monitor a mempool and cut in during deployment
by setting the administrator's address. This can actually be done
later, as the address setting is not guaranteed. Additionally, the
function setSuperAdmin() does not emit any event, so the incident
will probably not be noticed in time.

Recommendation:

Limit the ability to set the administrator address with the owner
and set the address during initialization in contracts OR use
OpenZeppelin's the '‘AccessControlUpgradeable” module.

Post-audit:
The Everstake team has added the modifier ownerOrSuper' to
setSuperAdmin() function.

security@blaize.tech m

Blaize.Security Everstake Smart Contact Audit

MEDIUM-1 + Resolved

Iterating all the elements of the storage array during one
transaction can result in a gas limit.

Accounting.sol: _activateRound().

There is a loop through all stakers of the storage array at
SLOT_PENDING_STAKERS_POSITION' on lines 89-92. During the life of
the contract, the array lengthens as new stackers are added.
Eventually, the cost of the deposit transaction may exceed the gas
limit, making it impossible for new accounts to make deposits.

Recommendation:

Implement the ability to split the calculation across multiple
transactions by making the round activation functionality batch or
otherwise.

Post-audit:

Pending stakers list now changes every new round. As a result,
when a new round is coming, the pending stakers list refreshes till
the next round.

security@blaize.tech m

Blaize.Security Everstake Smart Contact Audit

LOWEST-1 « Resolved

Lack of events.

To keep track of historical changes of storage variables, it is
recommended to emit events on every change in the functions
that modify the storage:

+ OwnableWithSuperAdmin.sol: setSuperAdmin().

« Accounting.sol: _activateRound(), deposit(), _update(),
withdrawPending(), withdraw(), claimPoolFeg(), setFeel(),
fromAutocompoundToMain(), fromMainToAutocompound(),
claimWithdrawReqguest(), setMinStakeAmount().

« AutocompoundAccounting.sol: _mint().

+ RewardsTreasury.sol: setPool().

* Pool.sol: unstake(), setPendingValidators(),
replacePendingValidator(), markValidatorsAsExited(),
pauseStaking(), pauseWithdraw(), setMinStakeAmount().

+ TreasuryBase.sol: sendEth(), setRewarder().

« Withdrawer.sol: _addWithdrawRequest(),
_interchangeWithdraw(), _closedValidatorStop(),
_claimWithdrawRequest().

Recommendation:

Emit event in these functions.

Post-audit.
All necessary events were added.

security@blaize.tech E

Blaize.Security Everstake Smart Contact Audit

LOWEST-2 + Resolved

Custom errors can be used.

OwnableWithSuperAdmin.sol, Accounting.sol,
AutocompoundAccounting.sol, CommonAccounting.sol, Pool.sol,
TreasuryBase.sol, and Withdrawer.sol.
Since the Solidity version 0.8.4, custom errors can be used instead
of requirements with string literals. Requirements with long error
messages are costly regarding gas consumption and the length of
bytecode taken up.
Therefore, it is recommended to replace all of them with the
custom errors with meaningful names to

* reduce contract bytecode;

* make the code more readable in general,

* reduce the gas consumption on reverse.
It is worth noting that it can:

« transmit additional parameters to make the errors in specific

cases more informative;

* be reusedq;

* be used cross-contract.
For example, ‘error MeaningfulName(parameters if needed)

Y

Recommendation:

Use custom errors instead.

Post-audit.

The Everstake team has created new contract called Errors, which
is now used in contracts to implement custom errors instead of
requires.

security@blaize.tech m

Blaize.Security

Everstake Smart Contact Audit

LOWEST-3 + Resolved

Incomplete code section.

Accounting.sol: line 264, 444,
There are to-do comments in the code which may indicate

incomplete functionality.

Recommendation:

Complete this section OR verify that it is completed and delete the
relevant comment.

Post-audit.
The comments were deleted.

LOWEST-4 + Resolved

Initializing variables in a loop.

Pool.sol: _stake(), line 113.

The local variables validator and pendingValidatorPubKey' are
declared in a loop, and therefore are destroyed and initialized with
each iteration. For such cases, it is recommended to declare a
variable before a loop to reduce the gas consumption.

Recommendation:

Declare the variables before the loop.

Post-audit.
The variables are now declared before the loop.

security@blaize.tech

Blaize.Security

Everstake Smart Contact Audit

LOWEST-5 + Resolved

Assigning a zero value instead of deleting.

StakerAccount.sol, WithdrawReqguests.sol,
OwnableWithSuperAdmin.sol, Accounting.sol,
AutocompoundAccounting.sol, and CommonAccounting.sol.
There is a resetting of storage variables by assignment a zero value
instead of use the operator 'delete’. For such cases, it is
recommended to use it to reduce gas consumption.

« StakerAccount: refreshRewards(), line 73.
‘WithdrawRequests: claim(), line 47.
‘OwnableWithSuperAdmin™: ‘renounceOwnership(), line 53.
Accounting:

« WithdrawPending(); line 20.

+ “autocompound(), line 439.
‘AutocompoundAccounting: _autocompoundMintPending(), line
88.
‘CommonAccounting: " claimReward(), line 77.

Recommendation:

Use the delete’ operator for these cases.

Post-audit.
The 'delete’ operator is now used.

security@blaize.tech m

Blaize.Security Everstake Smart Contact Audit
——

LOWEST-6 + Resolved

Local variables can be used.

WithdrawRequests.sol, Accounting.sol, and Pool.sol.
There are multiple readings of a storage variable or multiple calculations of
an arithmetic expression without using a local variable.
It is recommended to create a local memory variable for such cases to
locally store a value of a storage variable or a result of an expression to
reduce gas consumption.
« ‘'WithdrawRequests™
+ ‘add(); requests._values.length’ on lines 20, 27.
« ‘claim():
* ‘requests._values.length con line 39;
* ‘requests._valuesl[ilvalue on line 40, 45, 46.
« info():
* ‘requests._values.length’ on line 57,
+ requests._values[il.value on lines 58, 62, 63.
* 'Accounting:
+ _activateRound()": ‘'stakers.length() on line 89.
+ ‘deposit(); the passed variable ‘amount’ can be used instead of
‘depositToPendingValue. (amount -= interchangedAmount).
+ _deposit():
* PENDING_TOTAL_SHARE_POSITION.getStoragelint256()" on lines 116,
17,
+ the result of the sum on line 151 can be saved and also used
instead of 'PENDING_TOTAL_SHARE_POSITION.getStorageUint256()
on line 153.
+ “autocompound(): ‘rewardsTreasury’ on line 428 can also be used for
the call on line 445,

security@blaize.tech m

Blaize.Security Everstake Smart Contact Audit

.

* Pool', _withdrawableBalancel()
'ACCOUNTING_CONTRACT_POSITION.getStorageAddress() on lines 132, 133.

Recommendation:

Use local variables for the values.

Post-audit.
Local variables are now used.

LOWEST-7 + Resolved

Single-use local variables that do not save a value before
overwriting.

StakerAccount.sol, Accounting.sol, AutocompoundAccounting.sol, Pool.sol,
and Withdrawer.sol.

There are local variables that are used only once and do not save a value
before its overwriting. For such cases, using an arithmetic expression
directly without creating a local variable to reduce gas consumption is
recommended.

« ‘StakerAccount, refreshRewards(): a value of ‘'staker.rewards’can be
overwritten with the function result before ‘staker.index_with_precision =
indexWithPrecision'.

* 'Accounting:

« ‘withdraw() "
* ‘autocompoundBalance on line 237,
+ 'depositedAmount’ on line 262;
* ‘pendingStaker on line 263.
» ‘claimPoolFee(): rewarderBalance’ on line 321.
+ ‘userPendingRewards(): ‘balanceDiff’ on line 397.
+ '_calculateBalanceChanges() :
* ‘index on line 397;
* ‘newlndexWithPrecision” on line 392.
* _autocompound(): rewardsTreasury’ on line 428.

+ ‘autocompoundBalanceOf():
* ‘balanceDiff’ on line 454;

security@blaize.tech

Blaize.Security Everstake Smart Contact Audit
——

* ‘autocompoundPoolPendingReward’ on line 458;
* ‘autoCompoundDepositPart on line 460.
+ ‘fromAutocompoundToMain(): ‘activeRound’ on line 473.
* 'AutocompoundAccounting:
+ _autoCompoundUserBalance(): ‘'staker on line 27.
* _autocompoundMint(): ‘stakerAccount’ on line 94.
* 'Pool:
» "_stake()": ‘accountingContract on line 104.
* _withdrawableBalance()™:
» ‘commonBalance on line 132;
* ‘autocompoundBalance’ on line 133.
* ‘markValidatorsAsExited(): ‘validatorsRegistry' on line 222,
« ‘Withdrawer:
* _addWithdrawRequest(): ‘stakerWithdrawRequest on line 35.
+ _closedValidatorStop(): ‘withdrawRequestQueue' on line 76.
« _claimWithdrawRequest(): 'stakerWithdrawReqguest on line 97.
* ‘withdrawRequest(): withdrawRequestQueue' on line 113.

Recommendation:

Use the arithmetic expressions directly at the point of need without
creating a local variable.

Post-audit.
Direct arithmetic expressions are used now.

security@blaize.tech m

Blaize.Security Everstake Smart Contact Audit

LOWEST-8 + Resolved

Usage of SafeMath with the version 0.8.

StakerAccount.sol, Pool.sol.

The OpenZeppelin library SafeMathUpgradeable’ is used for the
library StakerAccount’ and the contract Pool’ that is implemented
in Solidity version 0.8.17. SafeMath ' is generally unnecessary starting
with Solidity 0.8, since the compiler now has built in overflow
checking. It is recommended to remove it and use the built-in
checking of arithmetic operations to reduce gas consumption and
improve code readability.

Recommendation:

Use the Solidity built-in checking instead of the library.

Post-audit.
‘SafeMathUpgradeable’ library was removed.

security@blaize.tech m

Blaize.Security Everstake Smart Contact Audit

LOWEST-9 + Resolved

External visibility can be used.

« OwnableWithSuperAdmin.sol: renounceOwnershipl(),
transferOwnership().

« Accounting.sol: userPendingRewards(),
autocompoundBalanceOf(), fromAutocompoundToMain(),
fromMainToAutocompound().

The functions have the public’ visibility, but they are not used
anywhere inside the contract, inherited contracts and derived
contracts. Therefore, it is recommended to use the external’
visibility for them to reduce the gas consumption and improve
code readability.

Recommendation:

Use the ‘external’ visibility for these functions.

Post-audit.
The functions are now declared as ‘external’.

LOWEST-10 + Resolved

Confusing naming.

Pool.sol: onlyGovernor().

The modifier is used to prevent unrestricted access to the
functionality. Its name implies that it provides access to the
functionality only for the governor, but in the condition it is also
available to the owner and super administrator.

Recommendation:

Rename it according to usage.

Post-audit.
The modifier was renamed to ‘'governorOwnerQOrSuper.

security@blaize.tech m

Blaize.Security

Everstake Smart Contact Audit

—

AutocompoundAccounting.sol
CommonAccounting.sol
Pool.sol
Accounting.sol
RewardsTreasury.sol

v/ Re-entrancy Pass

v/ Access Management Hierarchy Pass

v/ Arithmetic Over/Under Flows Pass

v Delegatecall Unexpected Ether Pass

v/ Default Public Visibility Pass

v/ Hidden Malicious Code Pass

v Entropy lllusion (Lack of Randomness) Pass

v/ External Contract Referencing Pass

v/ Short Address/Parameter Attack Pass

v/ Unchecked CALL Return Values Pass

+/ Race Conditions/Front Running Pass

+/ General Denial Of Service (DOS) Pass

v/ Uninitialized Storage Pointers Pass

v Floating Points and Precision Pass

v/ Tx.Origin Authentication Pass

v/ Signatures Replay Pass

v/ Pool Asset Security (backdoors in the Pass

underlying ERC-20)

security@blaize.tech

Blaize.Security

Everstake Smart Contact Audit

—

TreasuryBase.sol
Withdrawer.sol
WithdrawTreasury.sol
utils\OwnableWithSuperAdmin.sol
utils\Math.sol

v/ Re-entrancy Pass

v/ Access Management Hierarchy Pass

v/ Arithmetic Over/Under Flows Pass

v Delegatecall Unexpected Ether Pass

+/ Default Public Visibility Pass

v/ Hidden Malicious Code Pass

v/ Entropy lllusion (Lack of Randomness) Pass

v/ External Contract Referencing Pass

v/ Short Address/Parameter Attack Pass

v/ Unchecked CALL Return Values Pass

v/ Race Conditions/Front Running Pass

v/ General Denial Of Service (DOS) Pass

+ Uninitialized Storage Pointers Pass

v/ Floating Points and Precision Pass

v Tx.Origin Authentication Pass

v Signatures Replay Pass

v/ Pool Asset Security (backdoors in the Pass

underlying ERC-20)

security@blaize.tech

Blaize.Security Everstake Smart Contact Audit

—
structs\ValidatorList.sol
structs\StakerAccount.sol
structs\WithdrawRequests.sol

v/ Re-entrancy Pass
v/ Access Management Hierarchy Pass
v/ Arithmetic Over/Under Flows Pass
v Delegatecall Unexpected Ether Pass
+/ Default Public Visibility Pass
v/ Hidden Malicious Code Pass
v/ Entropy lllusion (Lack of Randomness) Pass
v/ External Contract Referencing Pass
v/ Short Address/Parameter Attack Pass
v/ Unchecked CALL Return Values Pass
v/ Race Conditions/Front Running Pass
v/ General Denial Of Service (DOS) Pass
+ Uninitialized Storage Pointers Pass
v/ Floating Points and Precision Pass
v Tx.Origin Authentication Pass
v Signatures Replay Pass
v/ Pool Asset Security (backdoors in the Pass

underlying ERC-20)

security@blaize.tech m

Blaize.Security

S A

Everstake Smart Contact Audit

CODE COVERAGE AND TEST RESULTS FOR
ALLFILES, PREPARED BY EVERSTAKE TEAM

> Compiled successfully using:

- solc: 0.8.17+commit.8df45f5f.Emscripten.clang

:. Fetching solc version list from solc-bin. Attempt #1

Downloading compiler. Attempt #1.

Contract: Poolversion list from solc-bin. Attempt #1

Withdraw 9: 174377rsion list from solc-bin. Attempt #1

success: withdraw (32 ETH(validator close) + claim) (2271ms)
success: withdraw (32 ETH(validator close) + claim) (2271ms)
success: withdraw (32 ETH(validator close) + claim) (2271ms)
Withdraw 9: 197598rsion list from solc-bin. Attempt #1

success: withdraw autocompound (32 ETH(validator close) + claim)
(1660mMs)

Withdraw 9: 218837rsion list from solc-bin. Attempt #1

success: withdraw autocompound’(1 ETH without pending) (2630ms)
Withdraw 9: 180292rsion list from solc-bin. Attempt #1

success: withdraw autocompound (32 ETH(validator close) + claim.
Deposit autocompound) (2814ms)wnloading compiler. Attempt #1.
Withdraw Q: 218837rsion list from solc-bin. Attempt #1

success: withdraw autocompound (1 ETH without pending. Deposit
autocompound) (2902ms)

Withdraw 9: 218837rsion list from solc-bin. Attempt #1

success: withdraw autocompound (1 ETH without pending. Deposit
autocompound) (2508ms)

Downloading compiler. Attempt #1.

Contract: Pool

success: withdraw ' (by 1 pending) (1733ms)pt #1

Withdraw 9: 401715rsion list from solc-bin. Attempt #1

success: withdraw(by 9 pending) (7908ms)pt #1

success: withdraw (2 withdraw rounds) (3047ms)

Withdraw Autocompound: 371992from solc-bin. Attempt #1
success: withdraw (interchange with autocompound acc) (3044ms)
Autocompound GasUsed2: 358626from solc-bin. Attempt #1
Withdraw Autocompound: 157867from solc-bin. Attempt #1
success: withdraw (interchange with autocompound pending
rewards) (3928ms)

security@blaize.tech

Blaize.Security Everstake Smart Contact Audit
——

Autocompound GasUsed2: 284626from solc-bin. Attempt #1
Withdraw Autocompound: 183096from solc-bin. Attempt #1
Withdraw Autocompound: 143324from solc-bin. Attempt #1
v/ success: withdraw (interchange autocompound with common) (5463ms)
Autocompound GasUsed?2: 318826 OXxD5SES8AAF1BDa51688e6f3De82E52Fb38E:
Withdraw Autocompound: 117334from solc-bin. Attempt #1
v/ success: ‘withdraw (interchange autocompound with autocompound
rewards) (3095ms)
Withdraw Autocompound: 139935from solc-bin. Attempt #1
v/ success: ‘withdraw (interchange autocompound with pending
autocompound) (2669ms)
Autocompound GasUsed?2: 243798 0x66078a97Defod40B2cA7abb44733d
D897Ec6231D
Withdraw Autocompound: 188810from solc-bin. Attempt #]1
v/ success: withdraw'(interchange autocompound with pending
avtocompound where (share > 1)) (3771ms)loading compiler. Attempt #1.
Contract: Pool
Stake GasUsed: 3890280n list from solc-bin. Attempt #1
Stake with autocompound GasUsed?2: 396866in. Attempt #1
Autocompound GasUsed2: 250426from solc-bin. Attempt #1
success: ‘stake‘(with autocompound) (4848ms) #1
success: off autocompound (2 stakers) (2896ms)
success: 'on autocompound (2 stakers) (1421ms)]
Downloading compiler. Attempt #1.
Contract: Pool
success: deposit
success: deposit’

SSNS

single user, stake completely used) (859ms)
claim pool fee) (1154ms)t #1

success: 'deposit (two users, stake completely used) (2162ms)
success: 'deposit (change fee after first fill) (687ms)

success: unstake pending ' (common) (95Tms)pt #1

success: 'unstake pending (autocompound) (1138ms)
success: unstake pending (all) (1344ms)empt #1

fail: 'unstake pending(empty, common) (1161ms)

fail: 'unstake pending’(empty, autocompound) (789ms)

fail: 'unstake pending(empty, all) (679ms)t #1

fail: ‘unstake pending (empty pending) (728ms)1

— o —p— g—

SESNSITSNSSNSNSSSS S

security@blaize.tech E

Blaize.Security Everstake Smart Contact Audit

v fail: 'unstake pending (common not empty, autocompound) (614ms)
v fail: 'unstake pending (autocompound not empty, common) (695ms)
v/ fail: 'deposit’(too low stake amount) (165ms)T

v/ success: pending validators(replace) (671ms)1

Full replace of pending validator: 106120n. Attempt #1

success: validators (pending -> deposited -> exited -> replaced) (925ms)
Downloading compiler. Attempt #1.

Contract: Pool

success: initializationfrom solc-bin. Attempt #1

Downloading compiler. Attempt #1.

NN

NS

36 passing (2m)

security@blaize.tech m

Blaize.Security Everstake Smart Contact Audit
——

CODE COVERAGE AND TEST RESULTS
FOR ALL FILES, PREPARED BY BLAIZE
SECURITY TEAM

Accounting
Deposit and withdraw under amount
Autocompound Accounting contract
Should change contract balance after deposit (356ms)
Should pending balance of user equal zero (327ms)
Should return correct autocompound balance of user (406ms)
Should transfer balance from maine to autocompound (459ms)
Should change balance (215ms)

8 NSNS

Deposit and withdraw under amount

H# Deposit

Should change storage data (244ms)

Should activated slots when amount equal '0'

Should change balance when autocompound is false (10Ims)
Should change balance when autocompound is true (140ms)
Should revert with 'Not owner or super admin’

8 SN N

Withdraw call
v/ Should change balance after withdraw pending (191ms)
v/ Should change balance after withdraw pending with different user
accounts (170ms)
Should revert with ‘Not owner or super admin' (47ms)
Should revert with custom error 'ZeroValue'
Withdraw
Should change balances (211ms)
Should change balance when Autocompound is false (153ms)
Should should revert with custom error 'Invalidvalue' (118ms)
Should revert with 'Not owner or super admin’

AERN

NN NN

Claim
- Should change balance after claim call

S

Should revert with custom error 'ZeroValue'
Claim pool fee
- Should change balance after claim pool fee call
v/ Should revert with custom error 'ZeroValue'
User pending rewards
v/ Should change balance

security@blaize.tech E

Blaize.Security

NN

LN

L

S SSSS

NN

Everstake Smart Contact Audit

Set fee

Should revert with 'Zero fee'

autocompound

Should emit event 'Autocompound'

autocompoundBalanceOf

0 result

Should be equal zero

fromAutocompoundToMain

Should revert with custom error 'Invalidvalue'
Should revert with custom error 'ZeroValue'

fromMainToAutocompound

Should revert with custom error 'ZeroValue'
Should revert with custom error 'Invalidvalue'
claimWithdrawReqguest

Should revert with custom error 'ZeroValue'

closeValidatorsStat

Should to be equal 0

update

Should return boolean

Setters

Should set new amount '

Should revert with 'Not owner or super admin'
Should change fee

Should revert with 'Not owner or super admin'
Should revert with custom error 'InvalidvValue'
Getters

Returns pending balance

Returns pending balance of account
Returns common balance of

Returns pool fee

Returns fee balance

Initialize

Should revert with 'Initializable: contract is already initialized'

Should revert with custom error 'ZeroValue' (131ms)

Deposit and withdraw under amount
Deposit & withdraw specific amount

User call stake with amount under min 5000000000000000

security@blaize.tech

B'C’IIZB.SBGUﬂty Everstake Smart Contact Audit

Transaction reverted with message: Stake too small

Userl call stake with min amount 10000000000000000
Transaction success. Min amount staked: 10000000000000000
Contract balance after min stake: 10000000000000000

User2 call stake with 1 ETH amount 1000000000000000000
Transaction success. Min amount staked: 1000000000000000000
Contract balance after 1 ETH stake: 1010000000000000000

User2 call stake with 32 ETH amount 32000000000000000000
Transaction success. Min amount staked: 32000000000000000000

User3 call stake with 1000 ETH 1000000000000000000000
Transaction success. Big amount staked: 100000000000000000000¢

User2 balance before stake: 9968999724209997793680

User2 balance after stake: 9968999724209997793680

Pool contract balance before big stake: 31010000000000000000
Pool contract balance after big stake: 7010000000000000000
RewardsTreasury balance after stake: 0

WithdrawTreasury balance after stake: 0

security@blaizetech m

B'C’IIZB.SBCUﬂty Everstake Smart Contact Audit

DepositTest balance after stake: 1024000000000000000000

Userl call unstake with min amount 10000000000000000
Transaction success. Min amount unstaked: 10000000000000000
Contract balance before unstake: 7010000000000000000
Contract balance after unstake: 7000000000000000000

User call same unstake one more time
Transaction reverted. Not enough withdrawable balance

User2 call unstake with IETH amount 1000000000000000000
Transaction success. 1 ETH unstaked: 1000000000000000000
User2 balance before unstake: 9968999724209997793680
User2 balance after unstake: 9969999560894996487160
Contract balance before unstake: 7000000000000000000
Contract balance after unstake: 6000000000000000000

User2 call unstakePending with 32ETH amount 32000000000000000¢
v Should stake min and max amount (1489ms)

Userl call stake with min amount 10000000000000000
Transaction success. Min amount staked: 10000000000000000
Contract balance after min stake: 10000000000000000

security@blaizetech

B'C’IIZB.SBCUﬂty Everstake Smart Contact Audit

FIRST UNSTAKE WITH MIN AMOUNT

Userl call unstake with min amount 10000000000000000
Transaction reverted with message: Not enough withdrawable bala
Contract should receive 32 ETH in total or more funds to unstake mir

User2 call stake with amount: - 32000000000000000000
Transaction success. Big amount staked: 32000000000000000000

Userl call unstake with min amount 10000000000000000
Transaction success. Min amount unstaked: 10000000000000000
Contract balance before unstake: 1

Contract balance after unstake: 0

User2 call stake with amount: - 32000000000000000000
Transaction success. 5 ETH staked: 32000000000000000000
Contract balance after stake: 4990000000000000001
Transaction success. 5 ETH unstaked: 32000000000000000000
User balance after unstake: 9999999372260994978088
Contract balance after unstake: 4990000000000000001

v/ Should stake min and max amount (434ms)

Userl call stake with min amount 1000000000000000000
Transaction success. Min amount staked: 1000000000000000000
Contract balance after min stake: 1000000000000000000

security@blaizetech

B'C’IIZB.SBCUﬂty Everstake Smart Contact Audit

1 ETH STAKE by user3

Userl call stake with min amount 1000000000000000000
Transaction success. Min amount staked: 1000000000000000000

User2 call stake with amount: - 32000000000000000000
Transaction success. Big amount staked: 32000000000000000000

Contract balance after stake: 2000000000000000000
Amount 32 ETH transferred as staker balance

Userl call unstake with 0,5 eth amount 500000000000000000
Contract balance after unstake: 1500000000000000000

User2 call stake with amount: - 31000000000000000000
Transaction success. Big amount staked: 31000000000000000000
Contract balance after stake: 500000000000000000

Amount 32 ETH transferred as staker balance

User3 call unstake with 1 eth amount 1000000000000000000
Contract balance after unstake: 0

security@blaizetech

B'C’IIZB.SBCUﬂty Everstake Smart Contact Audit

Amount 32 ETH transferred as staker balance

User3 call unstake with 1 eth amount 1000000000000000000
Contract balance after unstake: 0

User2 call stake with amount: - 10000000000000000000
Transaction success. Big amount staked: 10000000000000000000
Contract balance after stake: 9500000000000000000

Amount 0.5 ETH transferred as withdrawn by user3

User3 call unstake with 0,5 eth amount 500000000000000000
Transaction reverted. Not enough withdrawable balance
Contract balance after unstake: 9500000000000000000
User3 balance before claimWithdrawRequest: 99994995910389967282
User3 balance after claimWithdrawRequest: 999999951632599613060¢
Treasury balance after claimWithdrawRequest: 0

v/ Should stake 1 eth and unstake 1 eth (708ms)

Userl call stake with 1 ETH amount 1000000000000000000
Transaction success. Min amount staked: 1000000000000000000
Contract balance before 1 ETH stake: O

Contract balance after 1 ETH stake: 1000000000000000000

User balance before 1 ETH stake: 10000000000000000000000
User balance after 1 ETH stake: 9998999761440998091528

security@blaizetech

Blaize.Security

v

Everstake Smart Contact Audit

User2 call stake with 30 ETH amount 30000000000000000000
Transaction success. 30 ETH amount staked: 30000000000000000000
Contract balance before 30 ETH stake: 1000000000000000000
Contract balance after 30 ETH stake: 31000000000000000000

User balance before 30 ETH stake: 10000000000000000000000

User balance after 30 ETH stake: 9969999849052998792424

User2 call unstakePending with 30ETH amount 30000000000000000000
pendingBalance: 30000000000000000000

Contract balance before unstake: 31000000000000000000

Contract balance after unstake: 16000000000000000000

Transaction reverted. User try unstake more than he has in pending balan
Should call unstakePending and receive a pending balance (224ms)

Medium check

CAOCKCK

Pool

CAOCK

S NS

Flow

Set validator

3 users deposits total 12 ETH (54ms)

Go to next round (autocompound balance will be staked balance) (50ms)
Send tokens to reward (autocompound balance will increase)

Userl unstakes tokens (63ms)

Main

Stake

Unstake pending

Unstake (86ms)

Unstake 32 ETH (57ms)

Validators

Set pending validators

Validators added after stake > 32 ETH (55ms)
Replace pending validators

security@blaizetech

Blaize.Security

<K

S S

S LSS AN SNSNSSSSOSSSSSSSS

Everstake Smart Contact Audit

Mark as exited validator (47ms)

Governor

Set new governor

Set new governor as superAdmin

Ownable

Renounce ownership

Transfer ownership

Revert

When try to initialize contract second time

When try to initialize if WithdrawTreasury is zero address
When try to initialize if DepositContract is zero address
When try to initialize if Accounting is zero address
When try to stake if staking is paused

When try to stake if not met min amount

When try to stake 32 ETH if no pending validators
When try to unstake pending if withdraw is paused
When try to unstake pending 0 amount

When not governor tries to set pending validators
When try to set pending validators if pubkey == 48
When try to set pending validators if signature == 96
When try to set pending validators if already added
When try to get pending validator if wrong index
When try to get validator if wrong index

When not governor tries to replace pending validator
When try to replace pending validator if wrong index
When not governor tries to mark validator as exited
When try to mark validator as exited if not deposited status
When try to mark validator as exited num > len

When not governor tries to pause staking

When not governor tries to pause withdraw

When not governor tries to set governor

When not governor tries to set min staking amount
When ETH transfer was not successfull (73ms)

Scenario -- Token flow

Vv
v/

Flow
Set validator
Userl deposits 11 ETH

security@blaize.tech

Blaize.Security

Everstake Smart Contact Audit

v/ User2 deposits 25 ETH autocompound
v/ Userl tries to unstake (gets 4 ETH back immediately, 7 ETH requested)
v/ Owner stakes 10 ETH (7 ETH goes to WithdrawTreasury, 3 ETH goes to Pool
v/ Userl unstakes 7 ETH
RewardsTreasury
Deployment
v/ Sets the initial owner when initialization (56ms)
H# Action
Setting the pool
v/ Sets
v/ Prevents non-owners from setting
Restaking
v/ Restakes (51ms)
v/ Prevents non-rewarders from restaking
[Via WithdrawTreasury] TreasuryBase
Setting the rewarader
v/ Sets
v/ Prevents non-owners from setting
Sending Ether
v/ Sends
v/ Reverts when sending if an unsuccessful low-level call
v/ Prevents non-rewarders from sending
WithdrawTreasury
Deployment
v/ Sets the initial owner when initialization
Withdrawer
Adding a withdrawal request
Adds (46ms)
Adds if a number of validators to close is equal to the expected
number (47ms)
Adds if a zero number of validators to close
Does not add if a zero amount

v
v

NS

Interchange withdrawal

Interchanges (40ms)

Does not interchanges if an allowed amount is zero (44ms)
Updating the expected number of close validators

v Updates (46ms)

AN

security@blaize.tech

Blaize.Security Everstake Smart Contact Audit

Calculation of validator's closure

Calculates

Calculates if no expected validators

Calculates if the balance change is less than the beacon amount
Claim of a withdrawal request

Claims (51ms)

Reverts when claiming if zero amount to claim

S8 S

LT

Calculation of an amount of a withdrawal request
Calculates

NN

Calculates if an amount to withdraw from pending is greater than
the pending share

v/ Calculates if zero pending and zero withdrawal from pending

Getters

v/ Returns parameters of the queue of withdrawal requests

v/ Returns a withdrawal request
[Library] WithdrawRequests
Adding a request

v/ Adds

v/ Adds when pushing a new request

v/ Adds when pushing a new request if there are two requests (43ms)

v/ Adds when replacing a claimed request
Claim of a request

v/ Claims

v/ Claims if zero amount

v/ Claims if there is a claimed request (44ms)

v/ Claims if there is a request with a greater amount (39ms)
Getting total and claimable amounts

v/ Returns

v/ Returns if there is a claimed request (38ms)

[Library] Math

v/ Returns the smaller of two numbers if a is greater than b
v/ Returns the smaller of two numbers if b is greater than a
v/ Returns a number if equal numbers
OwnableWithSuperAdmin
Initialization
v/ Sets the deployer as the initial owner when initialization (81ms)
v/ Reverts when re-initialization (77ms)

security@blaize.tech

Blaize.Security Everstake Smart Contact Audit

SESN O SSSS SSS

NN

Action
Transfer of ownership to the zero address
Resets the owner by the owner itself
Resets the owner by the super administrator
Prevents non-owners and non-administrators from resetting
Transfer of ownership
Transfers by the owner
Transfers by the super administrator
Reverts when transfer if a new owner is the zero address
Prevents non-owners and non-administrators from transfer
Setting the super administrator
Sets if the current one is the zero address
Sets by the super administrator
Does not set if the caller is not the super administrator which is not
the zero address
Getters
Returns the owner
Returns the super administrator

+55 passing (3s)

security@blaize.tech

Blaize.Security Everstake Smart Contact Audit

TEST
COVERAGE
RESULTS

FILE % STMTS % BRANCH % FUNCS
AutocompoundAccounting.sol 92.31 7718 100
CommonAccounting.sol 78.57 7614 Q412
Pool.sol 100 100 100
Accounting.sol 921 8295 97.06
RewardsTreasury.sol 100 100 100
TreasuryBase.sol 100 100 100
Withdrawer.sol 100 100 100
WithdrawTreasury.sol 100 100 100
OwnableWithSuperAdmin.sol 100 88.89 100
Math.sol 100 100 100

security@blaize.tech

Blaize.Security

Everstake Smart Contact Audit

—
FILE % STMTS % BRANCH % FUNCS
ValidatorlList.sol 96.55 75 100
takerAccount.sol 95 87.5 100
WithdrawRequests.sol 100 100 100
All files 94.54 89.19 98.54

security@blaize.tech

Blaize.Security Everstake Smart Contact Audit

DISCLAIMER

The information presented in this report is an intellectual property
of the customer, including all the presented documentation, code
databases, labels, titles, ways of usage, as well as the information
about potential vulnerabilities and methods of their exploitation.
This audit report does not give any warranties on the absolute
security of the code. Blaize.Security is not responsible for how you
use this product and does not constitute any investment advice.

Blaize.Security does not provide any warranty that the working
product will be compatible with any software, system, protocol or
service and operate without interruption. We do not claim the
investigated product is able to meet your or anyone else’s
requirements and be fully secure, complete, accurate, and free of
any errors and code inconsistency.

We are not responsible for all subsequent changes, deletions, and
relocations of the code within the contracts that are the subjects
of this report.

You should perceive Blaize.Security as a tool, which helps to
investigate and detect the weaknesses and vulnerable parts that
may accelerate the technology improvements and faster error
elimination.

security@blaize.tech m

	Audit rating
	Auditing technics
	Complete analysis
	Contents
	Everstake scheme
	Everstake scheme-1
	Everstake scheme-2
	Everstake scheme-3
	Everstake scheme-4
	Everstake scheme-5
	Everstake scheme-6
	Everstake scheme-7
	Everstake scheme-8
	Everstake scheme-9
	Everstake scheme-10
	Executive Summary
	Executive Summary-1
	Graph of vulnerability
	Page#3
	Page#9
	Page#9-1
	Page#9-2
	Page#9-3
	Page#9-4
	Page#9-5
	Page#9-6
	Page#9-7
	Page#9-8
	Page#9-9
	Page#11
	Page#11-1
	Page#11-2
	Page#12
	Page#12-1
	Page#12-2
	Page#12-3
	Page#12-4
	Page#12-5
	Page#12-6
	Page#12-7
	Page#12-8
	Page#12-9
	Page#12-10
	Page#12-11
	Page#12-12
	Page#12-13
	Page#12-14
	Page#13
	Page#13-1
	Page#14
	Severity Definition
	Title Page

