
SMART CONTRACT AUDIT

01node

August 22nd, 2023 / v.	1.0

01node Smart Contact Audit

1security@blaize.tech

Table of

Contents
Audit Rating 2

Technical Summary 3

Graph of Vulnerabilities Distribution 4

Severity Definition 5

Auditing strategy and Techniques applied/Procedure 6

Executive Summary 7

Complete​ Analysis 18

Protocol Overview 9

Code Coverage and Test Results for All Files (Blaize Security) 31

Disclaimer 35

Test Coverage Results (Blaize Security) 34

01node Smart Contact Audit

2security@blaize.tech

SCORE 9.7 /10

audit

rating

The scope of the project includes 01node set of contracts:

contracts/NodeStakingPoolV220.sol

contracts/NodeLiquidETH.sol

contracts/OracleManager.sol

contracts/RewardManager.sol

Initial commit:

Branch: main

440e41b6e2fbe2352c7c76d802ae3ffd54d366a1

d62c81e831b0e581e2449753c96e00553efad2e8

Repository:

Staking Pools

https://github.com/01node/staking-pool-v2-contracts

Final commit:

01node Smart Contact Audit

3security@blaize.tech

Technical

summary

Testable code

During the audit, we examined the security of smart contracts for
the 01node protocol. Our task was to find and describe any
security issues in the smart contracts of the platform. This report
presents the findings of the security audit of the 01node smart
contracts conducted between August 7th, 2023 and August 22nd,
2023.

The code is 100% testable, which is above the industry standard of 95%.

The audit scope includes all tests and scripts, documentation, and
requirements presented by the 01node team. The coverage

is calculated based on the set of Hardhat framework tests and scripts

from additional testing strategies, and includes testable code from

manual and exploratory rounds.

However, to ensure the security of the contract, the Blaize.Security team
suggests that the 01node team follow post-audit steps

 launch active protection over the deployed contracts to have a system of
early detection and alerts for malicious activity. We recommend the AI-
powered threat prevention platform VigiLens, by the CyVers team

 launch a bug bounty program to encourage further active analysis of the
smart contracts.

INDUSTRY STANDARD

your average

100%75%50%25%0%

https://cyvers.ai/platform

01node Smart Contact Audit

4security@blaize.tech

Critical

High

Medium

Low

Lowest

1

3

1

5

13

FOUND

1

3

1

5

13

FIXED/VERIFIED

The table below shows the number of the
detected issues and their severity. A total of 23
problems were found. 23 issues were fixed or
verified by the 01node team.

22%

57%

13%

4%

4%

graph of
vulnerabilities
distribution:

critical

high

medium

low

LOWest

01node Smart Contact Audit

5security@blaize.tech

Severity Definition

The system contains several issues ranked as very
serious
and dangerous for users and the secure 
work of the
system. Requires immediate 
fixes and a further check.

Critical

The system contains a couple of serious issues, which 
lead to unreliable work of the system and migh 
cause
a huge data or financial leak. Requires immediate
fixes and a further check.

High

The system contains issues that may lead to
medium financial loss or users’ private information
leak. Requires
immediate fixes and a further
check.

Medium

The system contains several risks ranked as relatively 
small with the low impact on the users’ information 
and financial security. Requires fixes.

Low

The system does not contain any issues critical to the 
secure work of the system, yet is relevant for best
practices

Lowest

01node Smart Contact Audit

6security@blaize.tech

Auditing strategy and
Techniques applied/Procedure

We checked the contract for the following parameters:

Procedure

Whether the contract is secure;

Whether the contract corresponds to the documentation;

Whether the contract meets the best practices in the efficient use of
gas, code readability.

We have scanned this smart contract for commonly known and
more specific vulnerabilities:

Unsafe type inference;

Timestamp Dependence;

Reentrancy;

Implicit visibility level;

Gas Limit and Loops;

Transaction-Ordering
Dependence;

Unchecked external call -
Unchecked math;

DoS with Block Gas Limit;

DoS with (unexpected) Throw;

Byte array vulnerabilities;

Malicious libraries;

Style guide violation;

ERC20 API violation;

Uninitialized state/storage/ 
local variables;

Compile version not fixed.

Automated analysis:

Scanning contracts by several publicly available automated
analysis tools such as Mythril, Solhint, Slither, and Smartdec.
Manual verification of all the issues found with tools.

Manual audit:

Manual analysis of smart contracts for security vulnerabilities.
We checked smart contract logic and compared it with the one
described in the documentation.

01node Smart Contact Audit

7security@blaize.tech

Executive

summary

 The Blaize Security team conducted an audit of the 01node
protocol, which allows users to stake their ETH and receive rewards.
Users get LiquidETH tokens in exchange for verifying their staking
on the protocol. By integrating with the SSV protocol, 01node can
register a hardware infrastructure (operator) and an Ethereum
validator by sending 32 ETH to the Beacon deposit smart contract.

 The audit aimed to verify the security of staking, withdrawals,
storage writing, and the rewards system. Additionally, we checked
the smart contract against the list of common vulnerabilities, as
well as our internal checklist and gas optimizations.

 During the audit, a critical issue was identified regarding the
reward balance for users. Consequently, when a new validator was
added, the rewards were reset. Along with this critical issue, several
high-risk problems were found that were related to the old transfer
method for ETH, variable value writing, and storage updating. The
01node team successfully fixed all the issues that were found. 
 Other issues were associated with the lack of events, variable
validation and usage, and several gas optimizations. All of them
also were successfully fixed. 
 The overall security of the smart contract is high enough: it has
passed all the security checks. However, the 01node team has not
provided us with smart contract unit tests or technical
documentation. Therefore, there is no integrity checks to perform
during the further development, so, future features integration may
affect the existing business logic. Also, the code quality has the
potential to improve readability and optimization. All these facts
are reflected in the final mark. Nevertheless, our team has
thoroughly tested the entire set and made sure that the protocol
passes necessary security checks.

01node Smart Contact Audit

8security@blaize.tech

Security

Gas usage and logic optimization

Code quality

Test coverage**

Total

9.7

9.7

9.6

10

9.7

RATING

** Contracts do not have native unit-test coverage - all tests are
written by Blaize Security team in order to achieve sufficient
coverage and check business-logic.

01node Smart Contact Audit

9security@blaize.tech

0 1 n o d e s c h e m e

stake() Check that msg.value >
MIN_DEPOSIT_AMOUNT

Emit Stake event

Add msg.value to
pendingETHToStakeArray

Mint NodeLiquidETH
to user

Add msg.value to
pendingETHToStake variable

NodeLiquidETH.assets
ToShares()

User

unstakePending() Check that user has
enough shares

Emit Unstake event

amount =
NodeLiquidETH.sharesT

oAssets()

Send ETH to user

Check that
withdrawalsPool has

enough ETH to withdraw

Remove amount from
withdrawalsPool variable

User

unstake()

uint256 shares -- amount
of shares to unstake

Check that shares != 0

Add shares to
pendingUnstakeTotal

variable

Emit PendingUnstake event

Get users NodeLiquidETH
balance

Add shares to
pendingUnstakeArray

Check that user has
enough shares

NodeLiquidETH.minterBurn()

User

NodeStakingPool.sol NodeStakingPool is a contract, that user could stake ETH to earn rewards.

Users get NodeLiquidETH in exchange to proof stake.

User flow: user stakes ETH with stake() -> gets NodeLiquidETH -> unstake() -> burn
NodeLiquidETH -> unstakePending() -> gets ETH back.

01node Smart Contact Audit

10security@blaize.tech

0 1 n o d e s c h e m e

NodeStakingPool.sol

depositToBeacon
Contract()

bytes calldata
_publicKey -- validator

public key

bytes calldata
_publicKey --

validator public key

bytes calldata
_withdrawalCredentials
-- validator withdrawal

credentials

bytes calldata
_signature -- validator

signature

uint256 _amount --
amount of ETH to

deposit

bytes32
_depositDataRoot --

validator deposit data
root

Check that _amount ==
BEACON_DEPOSIT_AMOUNT

Remove _amount from
pendingETHToStake

variable

addValidatorInPool()

Deposit contract

Emit
ValidatorDepositedToB

eacon event

Get contract ETH balance

Recalculate
pendingETHToStakeArray

Check that contract
balance is enough to

deposit

DepositContract.deposit()

Pool manager

addValidatorInPool() Push validator key to
validatorsPool array

Add 32 ETH to
totalETHStaked variable

Update beacon and
share variables

Pool manager

Send 32 ETH

01node Smart Contact Audit

11security@blaize.tech

0 1 n o d e s c h e m e

NodeStakingPool.sol

updateManagers()

address _poolManager --
new pool manager address

address _oracleManager --
new oracle manager address

Check that _poolManager or
_oracleManager != 0x

address

Set PoolManager and
OracleManagerDeployer

addOperator()

Operator calldata _operator
-- operators to add

Check that
operatorPool.length > 0 and
operatorid == _operator.id

Add operator to
operatorsPool list

Add operator index to
operatorsPoolIndex mappingEmit OperatorAdded

Pool manager

removeValidatorFromPool()

bytes calldata _publicKey
-- validator public key

Get index of validator Remove validator from
validatorsPool array

Delete validator indexRemove 32 ETH from
totalETHStaked variable

Update beacon and
share variables

Pool manager

addToWithdrawalsPool() add msg.value to
withdrawalsPool

Emit
WithdrawalsPoolUpdatedPool manager

removeOperator()

uint32 _operatorId --
operator index to remove

Check that operator exists Remove operator from
operatorsPool list

Delete
operatorsPoolIndex

[_operatorId]
Emit OperatorRemoved

Pool manager

01node Smart Contact Audit

12security@blaize.tech

0 1 n o d e s c h e m e

RewardsManager is a contract that stores ETH to reward users for staking.

NodeLiquidETH is a token contract that sends to user that staked ETH on staking contract.NodeLiquidETH.sol

RewardsManager.sol

mint()

address to -- address to
mint tokens to

uint256 amount --
amount of tokens to mint

_mint()Minter

Send ETH to userEmit WithdrawRewards

getRewardsForUser() Gets NodeLiquidETH
contract address

Gets user's balance of
NodeLiquidETH token

Gets total supply of
NodeLiquidETH token

Calculate user rewardsReturn user rewards

withdrawRewards() userRewards =
getRewardsForUser()

Calculate fees from
userRewards

Store user rewards to
alreadyPaidRewardsByUser

mapping

Owner

withdrawFees() Checks available fees Transfer ETH to msg.sender

Emit WithdrawFees

Owner

burnFrom()

address _from -- address
to burn tokens from

uint256 amount --
amount of tokens to burn

Check that msg.sender has
role MINTER or PAUSER or

ADMIN
super.burnFrom()Minter

updateSharePrice()

uint256 totalAssets --
amount of assets

Calculate sharePrice emit LogUpdatedSharePriceMinter

01node Smart Contact Audit

13security@blaize.tech

0 1 n o d e s c h e m e

OracleManager is a contract sends information to oracle about value and rewards on
defined block number.

OracleManager.sol

sendOracleSubmission()

uint256 _value -- value to
be reported

uint256 _blockNumber --
block number of

submission

uint256 _rewards -- value to
be reported

bytes memory _signature
-- signature of the

message

Check that value is
differ from last report

Emit
LogNewOracleSubmission

Verify signature

If
oracleSubmissionsCount

>= MIN_THRESHOLD

Store oracle report to
oracleSubmissions

mapping

Increment
oracleSubmissionsCount

counter

Oracle

_processOracleStats() Get Oracle role
members

NodeStakingPool.updat
eOracleStats()

for every oracle member ->
store value of report in

reportedValues mapping

Emit
LogUpdatedOracleValue

for every reportedValues
-> get min/max value

Reset reports
Check that difference is less

than
MAX_DIFFERENCE_PERCENTAGE

Set
oracleSubmissionsCount

to 0
Get current oracle value

01node Smart Contact Audit

14security@blaze.tech

Protocol description:
01node is a protocol that enables users to stake ETH to earn
rewards/yield using the SSV network as a validator/operator
provider. It consists of

 NodeLiquidETH token contract that the user gets when staking
ETH

 the NodeStakingPool contract, which allows users to stake ETH,
send ETH to Beacon contract to become a validator, provide
operator management, and register SSV validator

 the RewardManager contract that stores reward information for
the user if the staked ETH on protocol

 OracleManager contract that stores information about the
protocol.

Roles and Responsibilities:

(NodeLiquidETH)

1. DEFAULT_ADMIN_ROLE

Responsibilities:

- Contract deployment

- Burn tokens

2. PAUSER_ROLE

Responsibilities:

- Pause/unpause contract

- Burn tokens

3. MINTER_ROLE

Responsibilities:

- Mint tokens

- Burn tokens

- Update Share price

Note: MINTER_ROLE and PAUSER_ROLE should be
NodeStakingPool contract

01node Smart Contact Audit

15security@blaze.tech

(NodeStakingPool)

1. PoolDeployer

Responsibilities:

- Contract deployment

- Update managers (PoolManager, OracleManager)

2. PoolManager

Responsibilities:

- Pause/unpause contract

- Add ETH to withdrawal pool

- Reactivate cluster on SSVNetwork contract

- Add/remove Operator

- Deposits to Beacon contract

- Register validator on SSVNetwork contract

- Add deployed validator

- Add/remove validator in validator pool

3. OracleManager

Responsibilities:

- Update Oracle stats

(RewardsManager)

1. Owner

Responsibilities:

- Update owner

- Update Pool contract

- Pause/unpause contract

- Update reward fees

- Withdraw fees

2. PoolContract

Responsibilities:

- Update rewards

01node Smart Contact Audit

16security@blaze.tech

(OracleManager)

1. DEFAULT_ADMIN_ROLE

Responsibilities:

- Contract deployment

2. ORACLE_ROLE

Responsibilities:

- Send Oracle submission

- Process Oracle stats

3. MANAGER_ROLE (staking pool)

Responsibilities:

- Update minimum threshold

- Update maximum difference percentage

- Update staking pool

- Pause/unpause contract

Deployment:

(NodeLiquidETH)

The deployment script seems correct and follows the
standard procedure for deploying smart contracts using
the Hardhat deployment plugin. Here's the breakdown of
the script:

- Gets deployer address and checks its address and
balance

- Gets contract factory and deploys it using deployProxy
function.

- Returns proxy address to console.

01node Smart Contact Audit

17security@blaze.tech

(NodeStakingPool)

The deployment script follows the standard procedure for
deploying smart contracts using the Hardhat deployment plugin
with deployment necessary contracts like RewardsManager and
NodeLiquidETH contracts. Here's the breakdown of the script:

- Prepared necessary addresses to deploy staking pool (Manager
address, SSVNetwork contract address, SSVToken contract
address, ETHBeacon contract address, NodeLiquidETH contract
although it deploys new contract in script)

- Gets deployer address and checks its address and balance

- Deploys RewardsManager using deployProxy function with
deployer address as contract owner. Returns proxy address to
console

- Deploys NodeLiquidETH using deployProxy function. Returns proxy
address to console

- Deploys NodeStakingPool using deployProxy with deployed
contracts. Deployer address sets as Pool and Oracle manager.
Returns proxy address to console

- On NodeLiquidETH contract grants MINTER_ROLE to deployed
NodeStakingPool contract.

- On RewardsManager updates Pool contract with deployed
NodeStakingPool contract

Note: There is no deployment script for OracleManager contract.
There are no separate deployment scripts for NodeStakingPool
and RewardsManager contracts.

The upgrade script is only present for the NodeStakingPool
contract, although implementation should be deployed before
using the upgrade script.

01node Smart Contact Audit

18security@blaize.tech

Complete​ Analysis

RewardsManager.sol: updateRewards().

Function updateRewards invokes in NodeStaking contract, when
updating oracle stats. This will rewrite rewardsPool and
totalRewards variables instead of adding value to it. As example,
admin adds 2 ETH to RewardsManager -> rewardsPool and
totalRewards are now 2 -> in NodeStaking contract invoked
addValidatorInPool() -> _updateOracleStats with rewards as 0 ->
rewardsPool and totalRewards are now 0 instead of 2, which
means that ETH is stuck in contract unless change PoolContract to
admin wallet and change rewards. Change logic of updating
rewards to prevent such behavior.

Total rewards could be rewritten.

Change logic of updating rewardsPool and totalRewards variables.

Recommendation:

Critical-1 Resolved

Post audit.

Rewards now added instead of rewrite.

01node Smart Contact Audit

19security@blaize.tech

NodeStakingPoolV230.sol: unstakePending(), line 592

RewardsManager.sol: withdrawRewards(), line 231

withdrawFees(), line 247

The function uses the .transfer() method for ETH transfer. The
withdraw() function sends all ETH to the owner, which may be set to
the multisig account. In this case, transfer() may revert since it does
not forward enough gas. Therefore, the funds may be stuck on the
contract. Since the .transfer() and .send() methods became
obsolete after the Istanbul Ethereum update, it is recommended to
use .call() for funds transfer with a mandatory check of the .call
result.

Obsolete eth transfer method.

Use .call() for ETH transfer.

Post audit.

Changed transfer() to call().

Recommendation:

High-1 Resolved

NodeStakingPoolV230.sol: beaconBalance variable.

The beaconBalance variable is initialized as zero and remains zero
because no value is added to it. The newBeaconBalance variable
is a local variable, the result of which should be beaconBalance.
Since beaconBalance is 0, there is a problem with removing a
validator from the pool because it tries to subtract 32 from 0.

beaconBalance is not updating its value.

Add value to beaconBalance variable when transferring ETH to
beacon contract.

Post audit.

beaconBalance now saves its value.

Recommendation:

High-2 Resolved

01node Smart Contact Audit

20security@blaize.tech

NodeStakingPoolV230.sol: r̀emoveOperator()`

Since the deletion changes the location of the last current
operator in the operatorsPool array of operators, but does not
overwrite the location index of this operator (which must be
updated in the operatorsPoolIndex map), errors occur when
deleting this operator in the next transaction.

An error in the algorithm for deleting operators

Update the operator index.

function removeOperator(uint32 _operatorId) external
onlyManager {

 ...

 [index] = operatorsPool[operatorsPool.length - 1];

 [operatorsPool[operatorsPool.length - 1].id] = index; // <- new code

 operatorsPool.pop();

 ...

}

Recommendation:

High-3

RewardsManager.sol: variables totalFeesEarned,
totalFeesWithdrawn

Variables totalFeesEarned and totalFeesWithdrawn not changing
which makes it unable to complete withdrawFees() function.

ETH could be stuck on contract.

Store changes in variables.

Post audit.

Variables totalFeesEarned and totalFeesWithdrawn are now stores
its value.

Recommendation:

Medium-1 Resolved

Resolved

Post audit.

Added recommended code.

01node Smart Contact Audit

21security@blaize.tech

Resolved

NodeStakingPoolV230.sol: initialize(), lines 233, 241-252, 254, 257.

Global variables are initialized in the initializer with default values
like 0 or the zero address. Removing the variables set from the
initializer is recommended to reduce gas when deploying the
contract.

Variables set to default values in initializer.

Remove default variable sets in the initializer.

Post audit:

Default values removed.

Recommendation:

Low-1

Resolved

NodeStakingPoolV230.sol: initialize().RewardsManager.sol: initialize(),
updateOwner(), updatePoolContract().

OracleManager.sol: initialize().

Parameters representing token addresses should be validated to
ensure they are not zero addresses. The address parameter should
be validated during deployment. In case of human error, the token
could be presented as a zero address, resulting in errors before this
problem is known and the contracts are upgraded.

Parameters lack validation.

Validate functions parameters.

Post audit.

Added zero address check in given functions.

Recommendation:

Low-2

01node Smart Contact Audit

22security@blaize.tech

Resolved

RewardsManager.sol: withdrawRewards(), lines 226-228,
withdrawFees(), lines 242-244.

In the given expressions, the variables are checked to see if they
are less than zero. However, because the variables are of the uint
type, the expressions will always be false. It is recommended to
either remove these expressions or change the check conditions.

Contradiction in expressions.

Remove false expressions OR change variable check.

Post audit:

Expressions removed.

Recommendation:

Low-3

Resolved

NodeStakingPoolV230.sol: updateManagers(), addValidatorInPool(),
removeValidatorFromPool()

RewardsManager.sol: updateOwner(), updatePoolContract(),
updateRewardsFee(), updateRewards(),

Events from the functions above are not emitted. However, they
can store information about important operations on the contract,
so these operations can be tracked in the future.

Lack of events.

Emit events in the given functions.

Post audit.

Events are now emitted.

Recommendation:

Low-4

01node Smart Contact Audit

23security@blaize.tech

Resolved

NodeStakingPoolV230.sol: pendingUnstakeArray, lines 508, 520, 546,
584.

As array is initialized with value 0 in it, length cannot be 0. Because
of it, there is no need to check if there are any values.

Unnecessary array length check.

Remove unnecessary checks on array length.

Post audit:

Checks removed.

Recommendation:

Low-5

Resolved

ǸodeStakingPoolV230.sol ̀and ÒracleManager.sol`

To deploy the ǸodeStakingPoolV230 ̀contract, you need to pass the
address of the ÒracleManager ̀contract as an argument. However,
to deploy the ÒracleManager ̀contract, you need to specify the
address of the ǸodeStakingPoolV230 ̀contract.

Contradiction in the deployment of contracts.

Specify the address of the first contract after deploying the second
contract, or vice versa.

Post audit.

Removed OracleManager address from initialization.

Recommendation:

Lowest-1

01node Smart Contact Audit

24security@blaize.tech

Resolved

NodeLiquidETH.sol: updateSharePrice(), lines 112-119

The s̀harePrice ̀calculation uses a call to the _̀decimalsOffset() ̀
method, which returns a constant value. These are additional gas
costs. Also in updateSharePrice() this function is used to represent
the power of 10, which also will be always 1 because of 10 ** 0.

Complications in calculations.

Remove the unnecessary call to the _̀decimalsOffset() ̀method and
replace the result of this method call with a literal.

Post audit.

Removed _decimalsOffset(), added DECIMALS_OFFSET variable.

Recommendation:

Lowest-2

Resolved

ǸodeLiquidETH.sol`

Only the M̀INTER_ROLE' role has the right to mint tokens, while the
M̀INTER_ROLE', P̀AUSER_ROLE', and D̀EFAULT_ADMIN_ROLE' roles have
the right to burn tokens.

Unequal access for specified roles.

Remove unnecessary roles for burning tokens.

Post audit.

Removed roles, burn tokens now can do only MINTER_ROLE.

Recommendation:

Lowest-3

01node Smart Contact Audit

25security@blaize.tech

Resolved

NodeLiquidETH.sol: burn()

The burn() function can burn tokens without the user’s allowance.
The token contract inherits from the ERC20BurnableUpgradeable
contract, which has burn and burnFrom functions. Since the b̀urn() ̀
function does not override the burn function from the inherited
contract, users can burn tokens from their accounts. The same
applies to the burnFrom() function, which can burn tokens if
allowed. Consider overriding the functions from the inherited
contract and using the burnFrom() function to burn tokens if the
user has allowed it.

Burn tokens without allowance.

Override burn functions and use burnFrom() instead of burn().

Recommendation:

Lowest-4

Verified

NodeStakingPoolV230.sol: addOperator()

Because the function only checks the id in the Operator calldata, it
is possible to add the same operator with a different id.

Ability to add the same operator with different id.

Check if validator id is already added.

Post audit.

01node has verified that they check operator entries before adding
them.

Recommendation:

Lowest-5

Post audit.

Changed burn function to burnFrom. Overridden burn and
burnFrom functions.

01node Smart Contact Audit

26security@blaize.tech

NodeStakingPoolV230.sol: addAlreadyDeployedValidator(),
addValidatorInPool(), removeValidatorFromPool()

OracleManager.sol: processOracleStats()

The given functions are utilized in other functions. However, if they
are not used in other contracts, it may be worth considering
changing their visibility from public to internal and removing the
unnecessary modifier for checking the role.

Functions should be marked as internal.

Change functions to internal.

Post audit.

processOracleStats() function is marked as internal. Removed the
addAlreadyDeployedValidator(). 01node team verified that
addValidatorInPool() and removeValidatorFromPool() functions
should be public to be able to add already deployed validators or
that was deployed externally.

Recommendation:

Lowest-6 Resolved

Verified

https://docs.ssv.network/developers/smart-contracts#goerli-
testnet-v3. Verify using the latest version of SSV contracts when
designing smart contracts.

SSV contract addresses differ.

Verify that addresses from deploy script is latest.

Post audit.

01node team verified that contracts for SSV v4 is listed here: https://
ssv-network.gitbook.io/docs-v4/

Recommendation:

Lowest-7

https://docs.ssv.network/developers/smart-contracts#goerli-testnet-v3
https://docs.ssv.network/developers/smart-contracts#goerli-testnet-v3
https://ssv-network.gitbook.io/docs-v4/
https://ssv-network.gitbook.io/docs-v4/

01node Smart Contact Audit

27security@blaize.tech

RewardsManager.sol: withdrawRewards(), withdrawFees()

The function does not check if the value to transfer is 0. Therefore, if
a user tries to invoke the function without rewards, the function will
be successful but have no effect as no rewards were collected.
Add a check to ensure that the amount to transfer is not equal to
zero.

Users could invoke functions without getting any ETH.

Add check value != 0.

Post audit.

Added check for user rewards and fees.

Recommendation:

Lowest-8 Resolved

Verified

NodeLiquidETH.sol: updateSharePrice()

As the flow goes, the user stakes ETH on the NodeStakingPool
contract, and liquidETH is minted to the user. However, the price is
not changing. It is important to verify how the price will change,
whether manually or automatically. Please provide steps on how
this is done.

Updating token price.

Verify asset price change.

Post audit.

The 01node team verified that the price updates every time a new
validator is added or manually by the OracleManager.

Recommendation:

Lowest-9

01node Smart Contact Audit

28security@blaize.tech

OracleManager.sol: lines 153-156, 163, 209-212, 307

Starting from version 0.8.4 of Solidity, it is advisable to use custom
errors instead of storing error message strings in storage and using
“require” statements. Custom errors are more efficient regarding
gas spending and enhance code readability.

Custom errors should be used.

Use custom errors.

Post audit.

Custom errors now used.

Recommendation:

Lowest-10 Resolved

Resolved

OracleManager.sol: _processOracleStats(), lines 182-185

Since the _processOralceStats function can only be invoked when
the oracleSubmissionsCount >= MIN_THRESHOLD expression is met
in the sendOracleSubmission() function, it is redundant to check if
oracleSubmissionsCount >= MIN_THRESHOLD again in the
_processOralceStats function.

Double check in function.

Remove the unnecessary check.

Post audit.

Unnecessary check removed.

Recommendation:

Lowest-11

01node Smart Contact Audit

29security@blaize.tech

RewardsManager.sol: totalFeesEarned, totalFeesWithdrawn

The variables totalFeesEarned, and totalFeesWithdrawn are
essentially the same when withdrawing fees, as they will have the
same value. Consider leaving only one variable, and when invoking
withdrawFees(), simply change the fee variable to 0.

Unnecessary variable usage.

Eliminate one of the given variables and reset the variable to zero
when withdrawing fees.

Recommendation:

Lowest-12

NodeStakingPoolV230.sol: lines 329-338, 468-491, 499-514

The code is commented, which means that it is not being used. It is
important to either uncomment or delete the commented code
before moving to production.

Commented code.

Uncomment OR remove commented code.

Recommendation:

Lowest-13

Post audit.

01node team verified that totalFeesWithdrawn is used to track how
much fee the owner took out.

Post audit.

Commented code was removed. Additionally, SSVNework contracts
integration was removed. The 01node team verified that the Pool
Manager wallet will now interact with the SSV protocol.

Verified

Resolved

01node Smart Contact Audit

30security@blaize.tech

Re-entrancy

Arithmetic Over/Under Flows

Access Management Hierarchy

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Pass

Delegatecall Unexpected Ether

Hidden Malicious Code

Default Public Visibility

External Contract Referencing

Entropy Illusion (Lack of Randomness)

Unchecked CALL Return Values

Short Address/Parameter Attack

Race Conditions/Front Running

Signatures Replay

Tx.Origin Authentication

Pool Asset Security (backdoors in the
underlying ERC-20)

General Denial Of Service (DOS)

Floating Points and Precision

Uninitialized Storage Pointers

contracts/NodeStakingPoolV220.sol

contracts/NodeLiquidETH.sol

contracts/OracleManager.sol

contracts/RewardManager.sol

31security@blaize.tech

NodeLiquidETH

Should be deployed (310ms)
Contract is on paused (89ms)
Contract is not on paused (88ms)
Minting of tokens (94ms)
Burning of tokens (96ms)
Updating of share price (92ms)
Conversion of assets to shares
Conversion of shares to assets
should successfully transfer funds between accounts (60ms)
Should update decimals offset (65ms)

Should burn tokens from the token owner (60ms)

Should burn tokens from another token owner with their approval (61ms)

Should burn tokens from another token owner without their approval (47ms)

NodeStakingPoolV230

Should be deployed (622ms)
Should receive ETH (56ms)
Should be reactivate cluster (42ms)
Removing of operator (58ms)
Getting a pool of operators
Should add of validator with correct publicKey (46ms)
Should add of validator with incorrect publicKey (47ms)
Getting a index of validator (66ms)
Deposit ETH to Beacon contract (83ms)
Staked ETH to the pool (115ms)
Unstacked ETH from the pool (106ms)
Unstacked pending ETH from the pool (121ms)
Get pending stake ETH for user
Get pending unstacked ETH for user (58ms)
Should be updated oracle stats (64ms)

01node Smart Contact Audit

Code coverage and test results
for all files, prepared by blaize
security team

32security@blaize.tech

Contract is on paused (55ms)
Contract is not on paused (70ms)
Add validator in pool by a non-manager

Should update the pool manager with the correct address
Should not allow updates with zero address
Should not allow updates without ònlyDeployer ̀access rights

Should update oracle manager with correct address
Should not allow updates with zero address
Should not allow updates without ònlyDeployer ̀access rights

Should update the withdrawals pool
Should change ETH balances
Should not allow updates without ònlyManager ̀access rights

Should add an operator
Should not add an already exists operator (40ms)
Should not add without ònlyManager ̀access rights

Should remove validator from pool (50ms)
Remove validator from pool by a non-manager

Should not update share price (51ms)

OracleManager

Should be deployed (559ms)
Should returns the hash of a message (39ms)
Should returns the hash of a signed message
Should be verified (53ms)
Should be recover signer
Should be split signature (45ms)
Should be sending a new oracle submission (94ms)
Calling of process oracle stats (159ms)

Should update update min threshold with correct address
Should not update with incorrect value
Should not update without access rights (61ms)

01node Smart Contact Audit

33security@blaize.tech

Should update update max difference percentage
Should not update without access rights (52ms)

Should update update staking pool with correct address
Should not update with incorrect value (39ms)
Should not update without access rights (47ms)

Should be paused
Should not be paused without access rights (57ms)

Should come off pause
Should remain on pause without access rights (50ms)

RewardsManager

Should be deployed (545ms)
Should receive ETH (105ms)
Should be will update contract owner address (49ms)
Contract is on paused
Contract is not on paused
Should be update of the rewards fee
Should be withdraw rewards for user (162ms)

Should withdraw fees for contract owner (138ms)
Should throw an error ǸotEnoughFees`

Should update rewards (44ms)
Should not update rewards without access rights (38ms)

Should update pool contract
Should not update pool contract with incorrect data (40ms)

01node Smart Contact Audit

01node Smart Contact Audit

34security@blaize.tech

FILE

NodeStakingPoolV230.sol

NodeLiquidETH.sol

OracleManager.sol

RewardManager.sol

All files

100

100

100

97.06

99.27

% STMTS

80.95

100

82

88.64

87.9

% BRANCH

100

100

100

100

100

% FUNCS

Test

coverage

results

01node Smart Contact Audit

35security@blaize.tech

Disclaimer
The information presented in this report is an intellectual property
of the customer, including all the presented documentation, code
databases, labels, titles, ways of usage, as well as the information
about potential vulnerabilities and methods of their exploitation.
This audit report does not give any warranties on the absolute
security of the code. Blaize.Security is not responsible for how you
use this product and does not constitute any investment advice.

Blaize.Security does not provide any warranty that the working
product will be compatible with any software, system, protocol or
service and operate without interruption. We do not claim the
investigated product is able to meet your or anyone else’s
requirements and be fully secure, complete, accurate, and free of
any errors and code inconsistency.

We are not responsible for all subsequent changes, deletions, and
relocations of the code within the contracts that are the subjects
of this report.

You should perceive Blaize.Security as a tool, which helps to
investigate and detect the weaknesses and vulnerable parts that
may accelerate the technology improvements and faster error
elimination.

