
SMART CONTRACT AUDIT

CoinSender

September 22nd, 2023 / v.	1.0

CoinSender Audit

1security@blaize.tech

Table of

Contents
Audit Rating 2

Technical Summary 3

The Graph of Vulnerabilities Distribution 4

Severity Definition 5

Auditing strategy and Techniques applied/Procedure 6

Executive Summary 7

Complete Analysis 13

Protocol Overview 9

Code Coverage and Test Results for All Files (Blaize Security)

Code Coverage and Test Results for All Files (CoinSender)

19

20

Disclaimer 21

CoinSender Audit

2security@blaize.tech

SCORE 9.9/10

audit

rating

The scope of the project includes CosmWasm contracts

src/contract.rs

src/error.rs

src/lib.rs

src/msg.rs

Initial commit:

800f348f942289bfa52ef85fd23d07b5ee7dffa7

6cd9ba07f7b0272b355722e24020068da8be4f8c

Branch: main

Repository:

https://github.com/Megadev-OU/cosmwasm-contracts

Final commit:

https://github.com/Megadev-OU/cosmwasm-contracts

CoinSender Audit

3security@blaize.tech

Technical

summary

Testable code

During the audit, we examined the security of smart contracts for
the CoinSender protocol. Our task was to find and describe any
security issues in the smart contracts of the platform. This report
presents the findings of the security audit of the CoinSender smart
contracts conducted between September 6th, 2023 and
September 22nd, 2023.

Auditors approved code as testable within the industry standard.

The audit scope includes all tests and scripts, documentation, and
requirements presented by the CoinSender team. The coverage

is calculated based on the of CosmWasm testing framework and scripts

from additional testing strategies, and includes testable code from

manual and exploratory rounds.

However, to ensure the security of the contract, the Blaize.Security team
suggests that the CoinSender team follow post-audit steps

 launch active protection over the deployed contracts to have a system of
early detection and alerts for malicious activity. We recommend the AI-
powered threat prevention platform VigiLens, by the CyVers team

 launch a bug bounty program to encourage further active analysis of the
smart contracts.

INDUSTRY STANDARD

your average

100%75%50%25%0%

https://cyvers.ai/platform

CoinSender Audit

4security@blaize.tech

Critical

High

Medium

Low

Lowest

0

0

2

1

8

FOUND

0

0

2

1

8

FIXED/VERIFIED

The table below shows the number of the
detected issues and their severity. A total of 11
problems were found. 11 issues were fixed or
verified by the CoinSender team.

9%

18%

73%

The graph of
vulnerabilities
distribution:

critical

high

medium

low

LOWest

CoinSender Audit

5security@blaize.tech

Severity Definition

The system contains several issues ranked as very
seriousand dangerous for users and the secure 
work of thesystem. Requires immediate 
fixes and a further check.

Critical

The system contains a couple of serious issues, which 
lead to unreliable work of the system and migh 
causea huge data or financial leak. Requires immediate
fixes and a further check.

High

The system contains issues that may lead to
medium financial loss or users’ private information
leak. Requiresimmediate fixes and a further
check.

Medium

The system contains several risks ranked as relatively 
small with the low impact on the users’ information 
and financial security. Requires fixes.

Low

The system does not contain any issues critical to the 
secure work of the system, yet is relevant for best
practices

Lowest

CoinSender Audit

6security@blaize.tech

Auditing strategy and Techniques applied/Procedure

Blaize.Security auditors start the audit by developing an auditing strategy -
an individual plan where the team plans methods, techniques, approaches
for the audited components. That includes a list of activities:

Manual audit stage

Manual line-by-line code by at least 2 security auditors with crosschecks
and validation from the security lead;

Protocol decomposition and components analysis with building an
interaction scheme, depicting internal flows between the components
and sequence diagrams;

Business logic inspection for potential loopholes, deadlocks, backdoors;

Math operations and calculations analysis, formula modeling;

Access control review, roles structure, analysis of user and admin
capabilities and behavior;

Review of dependencies, 3rd parties, and integrations;

Review with automated tools and static analysis;

Vulnerabilities analysis against several checklists, including internal
Blaize.Security checklist;

Storage usage review;

Gas (or tx weight or cross-contract calls or another analog) optimization;

Code quality, documentation, and consistency review.

Testing stage:

Development of edge cases based on manual stage results for false
positives validation;

Integration tests for checking connections with 3rd parties;

Manual exploratory tests over the locally deployed protocol;

Checking the existing set of tests and performing additional unit testing;

Fuzzy and mutation tests (by request or necessity);

End-to-end testing of complex systems;

In case of any issues found during audit activities, the team provides
detailed recommendations for all findings.

For advanced components:

Cryptographical elements and keys storage/usage audit (if applicable);

Review against OWASP recommendations (if applicable);

Blockchain interacting components and transactions flow (if applicable);

Review against CCSSA (C4) checklist and recommendations (if applicable);

CoinSender Audit

7security@blaize.tech

Executive

summary

CoinSender contract is a cosmwasm-based tool that simplifies batch
transactions, allowing users to transfer tokens to multiple accounts in one
transaction effortlessly. This tool will be useful in many scenarios, including
the distribution of tokens in airdrops, employee rewards, and payments to
various suppliers.

Auditors provide an in-depth review of the contract, validate its
deployment flow, initialization, presence of necessary validations, and
several more crucial places. During the testing stage, auditors check the
full flow of the contract - including validation of the tx initiation, funds
distribution, fees calculation, and sending to the collector account. There
were no critical findings, found issues are related to missing validations,
missed edge cases processing (found during the testing stage), and code
quality connected problems. All issues were resolved or verified by the
CoinSender team.

However, the CoinSender team applied a major update to the code during
the audit, which completely excluded admin-related logic and changed
the fee system. Auditors checked the update and verified the contract's
security. Now, the contract is fully decentralized. One of the important
features added to this contract is a user-specified transaction fee that can
be variated from 0.1% to 5%, which is equally applied to all transactions,
regardless of whether they involve native tokens or others. Despite the
contract needs an extended fee structure description (or natspec
comments), the user flow is quite transparent, and the contract is easy to
use.

The code is well-organized and self-declaring, with good native test
coverage. Therefore, the contract is verified to be secure for the usage.

CoinSender Audit

8security@blaize.tech

Security

Logic optimization

Code quality

Test coverage**

Total

10

10

9.8

9.8

9.9

RATING

** Contract has quite high native coverage which was checked by
Blaize Security team.

CoinSender Audit

9security@blaize.tech

Roles & Responsibiliti
 Deploye

 Deployment: The deployer deploys the smart contract by calling
the instantiate() function. During deployment, the owner sets
the initial value bank's addres

 Flow
 There is no deployment script, contract is deployed manually via

wasmd and CLI interface
 After the contract update performed by CoinSender team during the

audit, the contract became completely decentralized, with no admin/
owner roles. The only varied value is fee, which is provided by the dApp

 Users
 Role: Users are individuals or entities interacting with the deployed

smart contract to send tokens to recipients
 Responsibilities

 Transaction Execution: Users can call the execute() function with
the TokenSender action to send tokens to one or more
recipients

 Query Information: Users can call the query() function to retrieve
information about the owner's address, bank's address, or the
current fee percentage

 Flow
 Execute transactions by calling execute() with the TokenSender

action
 Query information as needed using the query() function.

Protocol overview

CoinSender Audit

10security@blaize.tech

Settings

Settings that must be set during deployment

 Bank Address: The bank's address is where transaction fees will
be sent. This address should be set during deployment to
determine where collected fees are routed. Once set it cannot
be changed. So in case of bank address compromise, the
whole contract needs to be re-deployed

 Max fee: Constant representing the maximum fee which can be
deducted. It is set to 5%. Also, it needs to be noticed, that the
minimum fee is 0.1%, implemented via the the check against
non-zero fee.

Deployment

No deployment script provided

Smart Contact Audit

11security@blaize.tech

W o r k f l o w

Basic Workflow

query()

Create keysBank addressinstantiate() OK response

'GetBank' action

View bank address

OK response

execute()

Initializes

Smart Contact Audit

12security@blaize.tech

W o r k f l o w

Basic Workflow

execute()

Calculate fee
amount

Calculate total
amount

Send tokens to
recipients

Charge fee to
the bank

OK response

'TokenSender'
action

Funds
deposited

Error
response

Error response
on fee > MAX_FEE

Error response 
on 0 fee

Error
response

Is exact one
asset

deposited?

Is 
deposited amount ==

total amount?

YES

YES

NO

NO

CoinSender Audit

13security@blaize.tech

Complete Analysis

Resolved

src/contract.rs.

In the ‘TokenSender’ action, If the deposited amount is greater than
the total amount required, the excess tokens would not be returned
to the sender, and furthermore, would not be sent to the bank
account and would not be sent to the owner of the contract. Funds
will be stuck at the contract address.

No validation for deposited amount to exceed the total amount

Add validation to the ‘TokenSender’ action, that ensures that the
deposited amount is exactly equal to the required total amount OR
add functionality to return excess tokens to the sender.

Recommendation:

medium-1

Resolved

src/contract.rs. line 28, line 105.

There is no validation for the provided owner address in the
'instantiate' function and the 'ChangeOwner' action. It may cause
contract ownership loss, and consequently, the contract
management mechanism will be unreachable.

That means the function may take invalid text strings as input, and
ownership will be lost. The issue is marked as Medium, as it is under
the owner's control and has a minor impact on security. Still, it
increases the risk of human mistakes and further impacts the
protocol.

Missing owner address validation.

Add the owner address validation(native cosmwasm
‘addr_validate’) to the ‘instantiate’ function and to the
‘ChangeOwner’ action, to avoid possible contract ownership loss.

Recommendation:

Admin functionality was completely removed

Post-audit:

medium-2

CoinSender Audit

14security@blaize.tech

Resolved

src/contract.rs. line 66.

In the ‘TokenSender’ action, a fee amount calculation represents
the amount of tokens users should deposit to pay for the execution.
Since the fee amount is calculated using the ‘get_fee()’ function
that returns the fee value as is, it is necessary to divide the
denominator value by ‘PERCENT_PRECISION.’ However, several tests
seem to have incorrect fee representation (refer to Info-5), and the
calculation example has no comment/natspec.

So, such tests and missing comments may be misleading during
the fee update and cause an incorrectly high amount set.

Unclear fee calculation

Validate the fee calculation (the ‘PERCENT_PRECISION’ constant
usage) AND verify native tests AND add the natspec comment with
fee example calculation (e.g. 10 = 1%, 500 = 50%, 1000 = 100%)

Recommendation:

With removal of admin, fee percent will be passed as argument of
‘TokenSender’ action, fee calculation description will be added.

From client:

Fee percentage is passed as an argument of ‘TokenSender’ action,
fee calculation description was added. Fee validation was added
with the fee variated from 0.1% to 5%.

Post-audit:

Low-1

CoinSender Audit

15security@blaize.tech

Resolved

src/contract.rs. line 44.

In the ‘TokenSender’ action, verifying deposited funds is
unnecessary because the next verification is for depositing one
asset only. If no asset is deposited, it will not meet the condition of
the ‘exact one asset deposited’ validation and will throw an error.
This validation makes sense only if adding a custom error message
for this scenario is important.

Unnecessary validation.

Remove unnecessary validation OR confirm this validation is
needed because of a custom error message.

Recommendation:

Lowest-1

Verified

src/contract.rs.

In the ‘TokenSender’ action, there is no validation for the sender
trying to send tokens to himself. In general, it’s unnecessary but will
make the user experience more pleasant.

Missing validation for the same recipient address as the sender.

Add validation for the same sender and recipient address OR
confirm that the current logic is correct.

Recommendation:

Lowest-2

CoinSender Audit

16security@blaize.tech

Resolved

src/contract.rs. line 22, line 124.

There is no validation for the fee provided in the ‘instantiate’
function and the ‘ChangeFee’ action. It may cause a scenario
where the fee value provided may be from ‘0’ to ‘u128::MAX’ and,
respectively, the bank account may lose its purpose, or the user
could lose a lot of money just because of inattention because the
fee amount may be set to 100% and even much more than 100%

Missing fee validation.

Add fee validation functionality against the max value. It is
recommended to add a threshold constant for the fee, which
cannot be exceeded.

Recommendation:

Lowest-3

With removal of admin, fee percent will be passed as argument of
‘TokenSender’ action, fee calculation description will be added.

From client:

Fee percentage is passed as an argument of ‘TokenSender’ action,
fee calculation description was added. Fee validation was added
with the fee variated from 0.1% to 5%.

Post-audit:

Resolved

src/contract.rs. line 17.

A constant variable is never used. This variable does not affect
anything, but may be needed in the future (even though it's not a
good practice).

Unused variable.

Delete an unnecessary variable OR confirm the need for that
variable in the future

Recommendation:

Lowest-4

CoinSender Audit

17security@blaize.tech

Resolved

1) Incorrect assertion in native test

tests/multisend/test_multisend.rs line 103.

The owner executes the 'TokenSender' action, but in the assertion,
there is a 'user' balance checked. Furthermore, the fee amount
should be removed, not added to the sender's address.

2) Incorrect fee representation

tests/test_utility/test_change_fee.rs line 19, line 35.

tests/utils.rs line 72.

In test_change_fee.rs, there is a comment that describes that the
fee provided to the function is 10%, but for such a percentage,
according to the ‘TokenSender’ calculations, the provided value
should be just ‘100’; since then, it will be divided for
‘PERCENT_PRECISION’ value. Analogically, in utils.rs, to set a 1% fee
value, the provided value should be just ‘10’ for the same reasons.

Fee calculations should be changed per Low-1 fixes.

Issues with native tests.

Fix native tests.

Recommendation:

Lowest-5

Resolved

src/contract.rs. line 29, line 119

There is no validation for the provided bank address in the
‘instantiate’ function and the ‘ChangeBank’ action. This value is
checked in the ‘TokenSender’ action, and tokens can’t be
transferred to the wrong address, but still, it’s essential to disallow
any incorrect addresses to be instantiated in the contract.

Missing bank address validation.

Add the bank address validation(native cosmwasm
‘addr_validate’) to the ‘instantiate’ function and to the
‘ChangeBank’ action, to avoid wrong address instantiation.

Recommendation:

Lowest-6

CoinSender Audit

18security@blaize.tech

Resolved

src/contract.rs.

The owner can change the core contract values without limitations
by calling ‘ChangeOwner,’ ‘ChangeFee,’ and ‘ChangeBank’ actions.
It may cause a scenario where the user expected one thing (using
query methods) but got another (since the owner may change
some values before ‘TokenSender’ was executed by the user).

Such behavior means an overpowered owner and generally
requires either rights limitation or implementation of multisig-like
access with timelock functionality. However, auditors understand
that such logic may be bound to the business case and desired
architecture. Either way, such issues should be present in the report
and confirmed by the team.

Owner can change the fee, bank address and owner address at
any time

Confirm that it is correct logic OR add limitations to the
‘ChangeOwner’, ‘ChangeFee’ and ‘ChangeBank’ actions.

Recommendation:

Lowest-7

Resolved

src/contract.rs.

To optimize compilation by using rust-optimizer and further
deployment, it is required that the ‘cosmwasm_contracts.wasm’ file
be generated after the‘ cargo wasm’ command executed, but it
isn’t.

File ‘cosmwasm_contracts.wasm’ is not generated

In order to generate *.wasm file of the contract, request a crate-
type of ‘cdylib’ in ‘cargo.toml’ by providing file following lines:

[lib]

crate-type = ["cdylib"].

Recommendation:

Lowest-8

19 security@blaize.tech

multisend::test_multisend::tests::test_repeated_recepients

multisend::test_multisend::tests::test_excess_deposited_funds

multisend::test_multisend::tests::test_instantiate_invalid_bank

multisend::test_multisend::tests::test_instantiate_invalid_owner

multisend::test_multisend::tests::test_properly_provided_fee

multisend::test_multisend::tests::test_invalid_token

Obsolete tests from previous iteration:

multisend::test_multisend::tests::test_invalid_bank_address

multisend::test_multisend::tests::test_instantiate_invalid_owner

test_utility::test_change_bank::tests::test_change_bank_invalid_addr	
test_utility::test_change_fee::tests::test_change_fee_to_extreme_max_value

test_utility::test_change_fee::tests::test_change_fee_to_extreme_min_value	
test_utility::test_change_owner::tests::test_change_owner_invalid_addr

CoinSender Audit

Code coverage and test results
for all files, prepared by blaize
security team

20security@blaize.tech

multisend::test_multisend::tests::test_success ... ok

multisend::test_multisend::tests::test_fail_not_enough_deposited -

should panic ... ok

test multisend::test_multisend::tests::test_fail_fee_too_big - should panic ...
ok

Obsolete tests from previous iteration:

test_utility::test_change_bank::tests::test_change_bank_success ... ok

test_utility::test_change_bank::tests::test_change_bank_fail -

should panic ... ok

test_utility::test_change_fee::tests::test_change_fee_success ... ok

test_utility::test_change_fee::tests::test_change_fee_fail - should panic ... ok

test_utility::test_change_owner::tests::test_change_owner_success ... ok

test_utility::test_change_owner::tests::test_change_owner_fail -

should panic ... ok

CoinSender Audit

Code coverage and test results for
all files, prepared by CoinSender
team

CoinSender Audit

21security@blaize.tech

Disclaimer
The information presented in this report is an intellectual property
of the customer, including all the presented documentation, code
databases, labels, titles, ways of usage, as well as the information
about potential vulnerabilities and methods of their exploitation.
This audit report does not give any warranties on the absolute
security of the code. Blaize.Security is not responsible for how you
use this product and does not constitute any investment advice.

Blaize.Security does not provide any warranty that the working
product will be compatible with any software, system, protocol or
service and operate without interruption. We do not claim the
investigated product is able to meet your or anyone else’s
requirements and be fully secure, complete, accurate, and free of
any errors and code inconsistency.

We are not responsible for all subsequent changes, deletions, and
relocations of the code within the contracts that are the subjects
of this report.

You should perceive Blaize.Security as a tool, which helps to
investigate and detect the weaknesses and vulnerable parts that
may accelerate the technology improvements and faster error
elimination.

