Blaize.Security

August 31st, 2023 /V.1.0

CRYPTOPIN

CRYPTOPIA
SMART CONTRACT AUDIT

Blaize.Security

Cryptopia Audit

TABLE OF
CONTENTS

Audit Rating

Technical Summary

The Graph of Vulnerabilities Distribution

Severity Definition

Auditing strategy and Technigues applied/Procedure
Executive Summary

Protocol Overview

Complete Analysis

Code Coverage and Test Results for All Files (Blaize Security)

Disclaimer

10

23

36

40

security@blaizetech

Blaize.Security

AUDIT
RATING

SCORE 9.8/10

The scope of the project includes Cryptopia:

Cryptopia Audit

contracts\source\tokens\ERC721\CryptopiaEarlyAccessShip\
CryptopiakarlyAccessShipTokenFactory.sol
CryptopiakdrlyAccessShipToken.sol
contracts\source\tokens\
ERC721\CryptopiaERC721.s0l
contracts\source\common\meta_transactions\
ContentMixin.sol

EIP712Base.sol

NativeMetaTransaction.sol
contracts\source\tokens\ERC20\retriever\
TokenRetriever.sol

Repository:

https://github.com/cryptopia-com/cryptopia-early-access-token

Branch: main

Initial commit:

B cca?003a2ffalbfa07e85101882b8b9flbbc2e80

Final commit:

B dc3el065962834d85c51841258d7193¢8156bd31

security@blaize tech n

Blaize.Security Cryptopia Audit

TECHNICAL
SUMMARY

During the audit, we examined the security of smart contracts for
the Cryptopia protocol. Our task was to find and describe any
security issues in the smart contracts of the platform. This report
presents the findings of the security audit of the Cryptopia smart
contracts conducted between August 22nd, 2023 and August 31st,
2023.

Testable code

INDUSTRY STANDARD

YOUR AVERAGE

0% 25% 50% 75% 100%

After the testing stage, code is 98% testable which is above the industry standard.

The audit scope includes all tests and scripts, documentation, and
requirements presented by the Cryptopia team. The coverage

is calculated based on the set of Hardhat framework tests and scripts
from additional testing strategies, and includes testable code from
manual and exploratory rounds.

However, to ensure the security of the contract, the Blaize.Security team
suggests that the Cryptopia team follow post-audit steps:

1. launch active protection over the deployed contracts to have a system of
early detection and alerts for malicious activity. We recommend the Al-
powered threat prevention platform VigiLens, by the CyVers team.

2. launch a bug bounty program to encourage further active analysis of the
smart contracts.

security@blaize tech H

Blaize.Security

Cryptopia Audit

THE GRAPH OF
VULNERABILITIES T
DISTRIBUTION: °
27%
B crica 13%
HIGH
MEDIUM
LOW AL
LOWEST
The table below shows the number of the
detected issues and their severity. A total of 18
problems were found. All of the issues were fixed
or verified by the Cryptopia team.
FOUND FIXED/VERIFIED
Critical 0 0
High 2 2
Medium 3 5
Low 5 S
Lowest 8 S

security@blaize tech

B'GiZB.SBCUFity Cryptopia Audit

SEVERITY DEFINITION

Critical

The system contains several issues ranked as very
serious and dangerous for users and the secure
work of the system. Requires immediate

fixes and a further check.

High

The system contains a couple of serious issues, which
lead to unreliable work of the system and migh

cause a huge data or financial leak. Requires immediate
fixes and a further check.

Medium

The system contains issues that may lead to
medium financial loss or users’ private information
leak. Requires immediate fixes and a further
check.

Low
The system contains several risks ranked as relatively

small with the low impact on the users’ information
and financial security. Requires fixes.

Lowest

The system does not contain any issues critical to the
secure work of the system, yet is relevant for best
practices

security@blaize tech B

B'QiZB.SBCUFity Cryptopia Audit

AUDITING STRATEGY AND TECHNIQUES APPLIED/PROCEDURE

Blaize.Security auditors start the audit by developing an auditing strategy -
an individual plan where the team plans methods, techniques, approaches
for the audited components. That includes a list of activities:

Manual audit stage

= Manual line-by-line code by at least 2 security auditors with crosschecks
and validation from the security lead;

= Protocol decomposition and components analysis with building an
interaction scheme, depicting internal flows between the components
and sequence diagrams;

= Business logic inspection for potential loopholes, deadlocks, backdoors;

= Math operations and calculations analysis, formula modeling;

= Access control review, roles structure, analysis of user and admin
capabilities and behavior;

= Review of dependencies, 3rd parties, and integrations;

= Review with automated tools and static analysis;

= Vulnerabilities analysis against several checklists, including internal
Blaize.Security checklist;

= Storage usage review;

= Gas (or tx weight or cross-contract calls or another analog) optimization;

= Code quality, documentation, and consistency review.

For advanced components:
= Cryptographical elements and keys storage/usage audit (if applicable);
= Review against OWASP recommendations (if applicable);
= Blockchain interacting components and transactions flow (if applicable);
= Review against CCSSA (C4) checklist and recommendations (if applicable);

Testing stage:

= Development of edge cases based on manual stage results for false
positives validation;

= Integration tests for checking connections with 3rd parties;

= Manuadl exploratory tests over the locally deployed protocol;

= Checking the existing set of tests and performing additional unit testing;

= Fuzzy and mutation tests (by request or necessity);

= End-to-end testing of complex systems;

In case of any issues found during audit activities, the team provides
detailed recommendations for all findings.

security@blaize tech n

B'GiZB.SBCUFity Cryptopia Audit

EXECUTIVE
SUMMARY

Blaize Security team has conducted an audit for the Cryptopia protocol.
The protocol consists of an ERC721 NFT collection, a factory for minting new
tokens, and common contracts for EIP-217 signatures and meta
transactions. Tokens represent ships with different characteristics and
stats. Contracts allow users to mint new ships by paying a specific amount
of ETH. Ships have different rarity and stats. Rarity affects the number of
daily allocations the ship's owner receives in an ERC-20 token.

The audit aimed to analyze the smart contracts against the list of
common vulnerabilities and auditors' internal checklist, validate the safety
of funds, including ETH, NFTs, and ERC-20 tokens, and check the
correctness of the minting process and allocation distributions.
Additionally, auditors have reviewed the correctness of meta transactions
and EIP-712 signatures and the implementation of ERC-712 itself.

Auditors discovered no critical issues. Two high-risk, three medium-risk,
five low-risk, and several lowest-risk problems were detected. High-risk
issues were connected to the obsolete ETH transfer method and the ability
of anyone to withdraw tokens on the TokenReceiver implementation.
Medium issues were regarding the absence of safeERC20, the ability to set
mint timestamps in the future, and the usage of an unsafe mint function.
Low- and lowest-risk issues focused on validating business logic and minor
issues that didn't have a critical effect on the protocol's security.

However, there are several unresolved lowest-risk issues worth noting:

* The lowest-3 issue described the lack of ERC-20 allocations transfer to
the protocol. Thus, the contract can't verify if the admin has provided
sufficient ERC-20 tokens to be allocated to the users. Though the
Cryptopia team has verified that they will transfer the necessary
amount of tokens in advance, we still recommend adding
corresponding validations in the contract or the script.

security@blaize tech

B'QiZB.SBCUFity Cryptopia Audit

+ The lowest-7 issue is connected to the upgradability of the ERC721 token.
The issue was raised since tokens are usually implemented as a non-
upgradable smart contract to ensure the safety of users’ funds and
metadata of the token. The Cryptopia team has ensured that the
upgradability will be turned off later by renouncing the ownership of
Proxy Admin. Nevertheless, the contract remains upgradable until then.
This is why the Cryptopia team should be extra cautious with any
possible upgrades of the CryptopiaEarlyAccessShipToken.sol.

+ Lowest-8 issue. This issue describes the insecure randomness
generation based on the on-chain data, which validators can predict or
manipulate. Though the Cryptopia team left comments in the code
assuring that such a level of randomness is enough for the protocol,
auditors still raised the issue since the randomness affects the rarity of
the ship, which, in turn, affects the daily allocations the ship will bring
the owner. The Cryptopia team has assured that the protocol will
operate correctly with the current implementation of the random
generator. Although the team verified the issue, it was still marked as
unresolved, and the contract hasn’t passed the test for Entropy lllusion.

Blaize Security team has tested all the smart contracts, including the
additional scenarios for minting and upgrading the tokens, allocation
distribution, and meta transactions execution. During the testing of
allocations and discussion with the Cryptopia team, we have verified that
the correct flow of allocation claiming is as follows: the user is able to claim
the whole allocation in one transaction after Monday, 1 September 2025,
00:00:00. It should also be noted that the NFT allows OpenSed’s
authentication to access tokens on behalf of users to allow users to use
their OpenSea proxy accounts for gasless transactions.

The overall security of the protocol is high enough. Contracts are well-
written and tested by both the Cryptopia and Blaize Security teams. The
contracts’ settings seem to be set correctly during deployment, though we
recommend the team double-check for the following functions before
setting them:

+ setlegacyMintedAt()

+ setReferrer()

« setBeneficiary()

+ setSkins()

security@blaize tech H

Blaize.Security Cryptopia Audit

RATING
Security 9.8
Logic optimization 9.7
Code quality 10
Test coverage 99
Total 9.8

security@blaize tech n

Blaize.Security Cryptopia Audit

CRYPTOPIA SCHEME

CryptopiaERC721.s0l

CryptopiaERC721 is @ abstract ERC721 token
contract that extends Openzeppelin ERCT21
contract.

Admin

f

setContractURI()

N

contractURI = uri

Admin

"

setBaseTokenURI()

02

baseTokenURI = uri

Admin Admin
N =) h 4 -
retrieveTokens() retrieveETH()
W R _
super.retrieveTokens(to Send ETH to
kenContract) msg.sender

info@blaze.tech m

AWAL_DATE
Check that msg.sender
== beneficiary

Transfer all tokens from
contract to beneficiary

“

Check that
tokenContract |= token

b

super.retrieveTokens(t
okenContract)

Blaize.Security Cryptopia Audit
—

e
| = = 1
' CryptopiaEarlyAccessShipToken.sol :
| |
: CryptopiaEarlyAccessShipToken is a :
| upgradable ERC721 token contract that []
: inherits CryptopiaERC721. Users are able to User :
| claim token for allocation. "
| - l 1
| I
| . . |
| F |

: uint _tradeld -- id ¢ ;

: T of a trade } Glatri() :
I L I
| |
:] _ |
) E: | r n 1
| address to -- address of : Check that user can !
| the owner of the ship ¢ kintiag claim token :
. i :
]]
| . e = k. =2 A x> 1
| |
| vint tokenld -- id of the safeMint() Check that msg.sender |
: ship to mint B is owner of token :
A ') l
) I
| - e = R - . N |
! bytes32 name — Set name, skinld and Check that token i
I unique ship name timestamp to allocation > 0]
: L J shiplnstances L :
| mapping |
] ;. _ e e 1
: vint128 skinld -- ship Add allocation to :
: skin id claimed in :
1 L | _sh[plnstcmces mapping_ :
l :
| = = 4 |
: uinti28 timestamp -~ r :
i timestamp at which the Transfer tokens to i
I B ship was minted msg.sender I
| L 1
| I
) 1
| |
I 1
| |
l 1 r l
: User Admin !
| |
l l :
| 1
' [deable [\ '
| - L Check that IERCZ0Upgradea e : !
! withdraw() ?| block timestamp >= [tokenContract -- token [¢——— retrieveTokens() !
5 L d ALLOCATION_WITHDR contract to retrieve :
| 1
I 1
| |
] 1
| |
] 1
| |
] 1
| |
]]
| 1
| |
| 1
| |
] 1
| |
I 1
| |
] 1
| |
] I
| |
] 1
| |

info@blazetech

Blaize.Security

f__

For every token id:

b

bytes3?2 referrer --

Check that ship is mintable refferrer
Check that ship is upgradable - -
Check that sender is owner of token
Transfer old ship to factory contact _
Check if ship is special [Pay refferral fee }

ICryptopiaEarlyAccessShipToken.mintTo()

R

random = _random()

For every token id:
Check that ship is

Cryptopia Audit
|
e e S S T T e LSS et
1
CryptopiaEarlyAccessShipTokenFactory.sol !
|
CryptopiaEarlyAccessShipTokenFactory is a factory ERC721 :
token contract that controls CryptopiaEarlyAccessShipToken]
contract. Users are able to upgrade from old ship version and Owner !
mint new one. "
- I
I
|
Owner Lyssse rafermarNome === |, | setReferrer() '
name of the referrer I
= = | L I
|
e = = l = :
f Check that .
address payable S setBeneficiary() address referrerAddress -- referrerAddress I= 0x :
_beneficiary -- address of the referrer oddress I
funds are - = = '
withdrawn to this ;
account - 4 . i
|
Check that _beneficiary)| Set refferrerAddress to 1
I= Ox address referrers mapping !
- |
I
. :
Check that lists have :
same length !
= = 1
. Owner :
|
Owner I
|
& ” = e :
address to — . i '
r 7 i . 1 address to mint to mint) :
vint[] memory tokenlds d L - L . I
- ids of tokens . LRI !
f o= 3 = \ = _ . |
1
l ! bytes32[] memory ships Check that user can I
T i 7 -- ships to mint mint ships :
bytes32[] memory ships sender = L - L I
-- ships to mint _msgSender() :
L J . J) 4 i) J .
I
uint128[] memory skins -- Check that user can I
IF 1 1 skins to mint pay for mint fee :
uint128[] memory skins -- random = _random) - - L i
skins to mint - I
L = - I
|
1
|
1
|
1
|
I
|
I
|
I
|
I
1
|
I
|
I
|
I
|
I
|
I
I
I
I

1 T fi Il ETH fi ik
" . ransfera rom Check if ship is

Qwnar Withcraw) contract to beneficiary special e

i d L ICryptopiaEarlyAcces

s5hipToken.mintTo()
{ .| superretrieveTokens(t IERC20Upgradeable tokenContract
Owner ¥ retrewcTokerid okenContract) -- token contract to retrieve
info@blazetech

Blaize.Security

Cryptopia Audit

Mint ships

User

User

Trader

If user had referrer

User

User

User

Claim tokens for ships allocation

[User

[User

rmint()

CryptopiaEarlyAccess

Transfer ETH for mint fee

ShipTokenFactory

CryptopiaEarlyAccess

Transfer new minted ships

ShipTokenFactory

CryptopiaEarlyAc

cessShipToken

CryptopiaEarlyAc

If user has legacy ships -> upgrade to new ships

upgrade()

cessShipToken

CryptopiaEarlyAccessS

Transfer legacy ships ERC?2]

hipTokenFactory

CryptopiaEarlyAccess

Transfer new minted ships

ShipTokenFactory

CryptopiaEarlyAc

claiml()

cessShipToken

Transfer tokens for allocation

cessShipToken

cessShipToken

CryptopicEarlyAc]

CryptopiaEarlyAc]

info@blazetech

Blaize.Security

Cryptopia Audit

ROLES AND RESPONSIBILITIES

CryptopiaEarlyAccessShipTokenFactory

1. Owner (CryptopiaEarlyAccessShipTokenFactory.sol)
Responsibilities:
* Correct deployment of the smart contract.
The contract owner has special privileges, including setting the
beneficiary address, setting referrers, and withdrawing funds.
Owner can also upgrade legacy ships and manage various
aspects of the contract.
Possibilities:
* Can call methods: “withdraw”, “setBeneficiary”, “setReferrer”,
“setLegacyMintedAt”.
* Has access to change legacy mintedAt timestamps for specific
tokens.
» Can transfer contract balance.

2. Users (CryptopiaEarlyAccessShipTokenFactory.sol)

Responsibilities:

» Correct interaction with contract by methods: mint & upgrade.
The mint() function has permitted mint of the new ship tokens. The
basic parameter for ship minting is the ship name (ships) and
corresponding skin information (skins) that they would like to mint.
Users can upgrade ship tokens by providing token IDs of the legacy
ships they want to upgrade, along with the new ship names (ships)
and skin information (skins).

Before the minting, the contract burns old tokens, and only after it
mints new ship tokens with the specified properties.
Users provide a referral by bytes32 as a potential rewards receiver.

Possibilities:

* Can call methods: “mint”, “upgrade.

* Can mint new ship token.

* Can upgrade existing tokens in specific manner.

info@blazetech

Blaize.Security

Cryptopia Audit

3. Beneficiary (CryptopiaEarlyAccessShipTokenFactory.sol)
Responsibilities:
» Receiver of the contract balance
Possibilities:
* Receive a contract balance after owner call function withdraw

4, Referrers (CryptopiaEarlyAccessShipTokenFactory.sol)
Responsibilities:
+ Receiver of the rewards according to contract condition.
Possibilities:

Individuals or addresses acting as referrers can earn referral

rewards if users provide their referral code when minting tokens.

CryptopiaEarlyAccessShipToken

1. MINTER_ROLE (CryptopiaEarlyAccessShipToken.sol)
Responsibilities:
Minter controls the minting process for new tokens within that
contract.
Possibilities:
» Can call methods: “mintTo”

info@blazetech

Blaize.Security

Cryptopia Audit

Abstract contract CryptopiaERC721 is ICryptopiaERC72],
ERC72IEnumerableUpgradeable, ContextMixin,
NativeMetaTransaction, AccessControlUpgradeable,
TokenRetriever

1. ADMIN_ROLE (CryptopiaERC721.s0l)
Responsibilities:
« Administrative actions and management of the contract.
» Grant and revoke roles.
» Set Up a contract URI and base token URL.
+ Retrieve tokens or ETH accidentally sent to the contract.
Possibilities:
» Can call methods: “setContractURI”, “setBaseTokenURI”,
‘retrieveTokens”.
The holder of the ADMIN_ROLE can perform various administrative

functions to manage the contract's metadata and access control.

This role is responsible for maintaining the overall functionality of
the contract.

2. DEFAULT_ADMIN_ROLE (CryptopiaERC721.s0l)

Responsibilities:

* General administrative actions and emergency recovery.

» Similar to ADMIN_ROLE but with broader access.

Possibilities:
The holder of the DEFAULT_ADMIN_ROLE has similar administrative
capabilities to the ADMIN_ROLE. This role is often used for general
contract administration and can also be used for emergency
scenarios.

Abstract contract ContextMixin

1. Sender (ContextMixin.sol)
Responsibilities:
* to return address of caller
Possibilities:
* returns payable address

info@blazetech

Blaize.Security Cryptopia Audit

EIP712Base is Initializable
Contains no specific roles and responsibilities

NativeMetaTransaction is EIP712Base

1. Caller (NativeMetaTransaction.sol)
Roles are not explicitly defined.
Responsibilities:
» A caller can call public method “executeMetaTransaction”

“executeMetaTransaction” This function is used to execute a meta-
transaction. It takes in the user's address, the function signature to
be executed, and the signature components (R, S, and V) of the
signer's.

TokenRetriever is ITokenRetriever
Contains no specific roles and responsibilities

info@blazetech

B'QiZB.SBCUFity Cryptopia Audit

DEPLOYMENT

Contracts list for deploy

WhitelistContract a.k.a "Whitelist";

ShipTokenContract a.k.a "CryptopiakarlyAccessShipToken";
ShipTokenFactoryContract a.k.a. "CryptopiaEarlyAccessShipTokenFactory”;

WhitelistContract

The deployment script seems correct and follows the standard procedure
for deploying smart contracts using the Truffle deployment plugin. Here's
the breakdown of the script:

1. It imports the necessary modules and gets the named accounts for
deployer'and configs.

2. It retrieves the address of the previously deployed opensea contract.

3. Parameter config.opensea is an address settled as
“Oxa5409ec958¢83c3f309868babaca7c86dchb077¢l”

At etherscan this address is WyvernProxyRegistry: https://etherscan.io/
address/0xa5409ec958¢c83c3f309868babaca7c86dchb077ci#code

info@blazetech m

Blaize.Security Cryptopia Audit

ShipTokenContract

The deployment script seems correct and follows the standard
procedure for deploying smart contracts using the Truffle
deployment plugin. Here's the breakdown of the script:

1. It imports the necessary modules and gets the named accounts
for deployer’and configs.

2. Parameter of:
+ config.token = Oxabdd22dfe5db2be20262050523470b650€911246
At ether scan address is CryptopiaToken https://etherscan.io/
address/Oxabdd22dfe5db2be20262050523470b650e91f246H#code
+ config.beneficiary =
OXdaA304c435040468da4BASBBEC8B9365C6H6CC4501

» whitelistinstance.address - contract previously deployed

» config.contractURI = 'https://api.ethereum.cryptopia.com/
ERC721/CryptopiaEarlyAccessShipToken'

» config.baseTokenURI = 'https://api.ethereum.cryptopia.com/
ERC721/CryptopiaEarlyAccessShipToken/'

info@blazetech

Blaize.Security Cryptopia Audit

ShipTokenFactoryContract:

The deployment script seems correct and follows the standard
procedure for deploying smart contracts using the Truffle
deployment plugin. Here's the breakdown of the script:

1. It imports the necessary modules and gets the named accounts
for deployer’and configs.

2. Parameter of:
+ shipTokenlnstance.address = contract deployer previously
+ config.legacyShipToken =
Oxd14Cb56763EF92017d1d26303aCB356830C467d8
At etherScan CryptopiaEarlyAccessToken https://etherscan.io/
address/0xd14Clb56763EF92a17d1d263030CB35683aC467d8H#code
+ config.beneficiary =
OXdaA304c435040468da4BASBBEC8B9365C66CC4501
At etherscan address https://etherscan.io/
address/OxdaA304c435b40468da4BASB8EC89365C66CC4501

info@blazetech m

B'GiZB.SBCUFity Cryptopia Audit

ASSETS AND SETTINGS

Assets (Cryptopia)
Contract CryptopiaEarlyAccessShipToken stores:
NFT:
+ As ERC721 token stores metadata of each NFT. Metadata contains
two types Ship & Shiplnstance.
* Only address with MINTER_ROLE can mint new NFT

token:
* As ERC20 token contract allows NFT owner can claim this token as
allocation
« Address settled as beneficiary can withdraw full contract balance
in tokens.

Contract CryptopiaEarlyAccessShipTokenFactory stores:
Native currency:
* as payment for mint NFTs
* address settled as beneficiary can fully withdraw contract
balance
NFT:
* as ERC721 token, contract stores metadata about each NFT
* Only NFT owner can upgrade token or make any other action with
own NFT

Settings (CryptopiaEarlyAccessShipToken):

1. token: This setting determines the token that will be used for
allocation of a ship ERC721. It's important to set this to the correct
token address. If set incorrectly, it could potentially harm protocol.

2. beneficiary: This setting determines the address that will be able to
withdraw the allocation token from the contract. It is important to
secure and control this address, as it has access to the full balance
of the token.

info@blazetech m

Blaize.Security

Cryptopia Audit

Settings (CryptopiaEarlyAccessShipTokenFactory):

1. SshipToken: This setting determines the
CryptopiaEarlyAccessShipToken contract that will be used to mint
new ERC721 tokens. Incorrect address set into this settings, will
break the contract logic.

2. legacyShipToken: This setting determines the address of an old
ship token contract. If set address incorrectly, users would not be
able to upgrade to new ship contract.

3. beneficiary: This setting determines the address that will be able
to withdraw the ETH from the contract. It is important to secure and
control this address, as it has access to the full balance of the ETH
on the contract.

Meta Transaction description

Meta transaction is a transaction, for which user will not pay gas to
send.

It works in the following way:

- A user on frontend invokes the upgrade() function from
CryptopiakarlyAccessShipTokenFactory

- Pop-up comes from wallet to sign message that will be used to
send transaction.

- After the user signs the message, the backend executes a
transaction with a separate wallet address as the user would
invoke it.

- User receives new NFTs without paying any gas.

info@blazetech

B'GiZB.SBCUFity Cryptopia Audit

COMPLETE ANALYSIS

HIGH-1 + Resolved

Obsolete eth transfer method

CryptopiakarlyAccessShip\CryptopiakarlyAccessShipTokenFactory.
sol, mint(), withdraw()

Function utilizes transfer() method for ETH transfer. The function
sends all ETH to the owner, which may be set to the multisig
account. In this case, transfer() may revert since it forwards not
enough gas. Therefore funds may be stuck on the contract.

Since .transfer() and .send() methods became obsolete after the
Istanbul Ethereum update, it is recommended to use .call() for funds
transfer with the mandatory check of the .call result.

Recommendation:
Use .call() for ETH transfer.

Post audit.
call() is used now.

HIGH-2 + Resolved

Anyone can withdraw tokens from the contract.

TokenRetriever.sol: retrieveTokens()Function has no access control.
Thus, anyone can invoke it and withdraw all tokens from the
contract. As this contract is only used in other contracts and not by
itself, it should be marked as abstract as a function overridden in
contracts that inherit this function.

Recommendation:
Add access control or role check to the function.

Post audit.
CryptopiaERC721 inherits retrieveTokens() function where access
control is implemented.

security@blaize tech m

Blaize.Security

Cryptopia Audit

MEDIUM-1 + Resolved

SafeTrasfer should be used

TokenRetriever.sol, retrieveToken()
functionCryptopiaEarlyAccessShipToken.sol, claim(), withdraw()
functions

The function uses .transfer() method for ERC20 tokens. It works for
most tokens, though it will not work for tokens with incorrect ERC20
interface - in case there is no transfer method return value. Though
the issue is marked as Medium, since USDT and several bridged
tokens have incorrect ERC20 interface, so even stablecoins may be
stuck in the contract.

Note: the same applies to CryptopiakarlyAccessShipToken.sol,
claim(). Though this place requires verification if the token used and
may not require safetransfer

Recommendation:

Use SafeERC20 library OR list tokens which will be used in the
function. It is better to use SafeTransfer in case if the function has
general meaning and should work with any ERC20

Post audit.

Cryptopia team added SafeERC20 to TokenRetriever contract.
Cryptopia team verified that CryptopiaEarlyAccessShipToken
contract will use token created by Cryptopia so it will be
implemented correctly.

security@blaize tech

B'GiZB.SBCUFity Cryptopia Audit

MEDIUM-2 + Resolved

Timestamp in the future will temporarily break the view logic

CryptopiaEarlyAccessTokenShip.sol, mintTo(), _getTotalAllocation()
mintTo() function allows the setting of a custom timestamp for the
ship instance. In case of the timestamp set in the future, function
_getTotalAllocation() will revert. Thus, all functionality bound to this
function and such ship instance will revert.

Recommendation:
Add a condition to return O for the total allocation in case of the
ship instance timestamp in the future.

Post audit.

It is now validated in _getTotalAllocation() that timestamp of ship
instance is not greater than the block.timestamp. Cryptopia team
has also clarified that legacy data will be minted using the script
setlegacyMintData.ts and there won’t be any timestamp set in the
future.

MEDIUM-3 «” Resolved

_safeMint() should be used

CryptopiaEarlyAccessShipToken.sol, mintTo() function

Function uses _mint() method for ERC721. It is recommended to use
_safeMint() as it ensures that the recipient is either an EOA or
implements IERC721Receiver.

Recommendation:
Change _mint() to _safeMint().

Post audit.
safeMint is now used.

security@blaize tech E

B'GiZB.SBCUFity Cryptopia Audit

LOW-1 + Resolved

SafeMath library should be omitted

NativeMetaTransactions.sol

Since solc 0.8.x has built-in overflow and underflow restrictions,
SafeMath library should be omitted, as now it adds extra gas
spendings for the contract.

Recommendation:

remove SafeMath library.

Post-audit.
SafeMath was removed.

LOW-2 + Resolved

Missing explicit visibility

NativeMetaTransactions.sol, nonce mapping
CryptopiaEarlyAccessShipTokenFactory.sol: lines 34-36
CryptopiaEarlyAccessShipToken.sol: lines 47-48

Missing explicit visibility violates the standard security checklist for
Solidity contracts. Missing visibility makes contract code
misleading for a user and may signalize missing edge cases for
values reading.

Recommendation:

Provide explicit visibility.

Post-audit.
Added visibility to given variables.

security@blaize tech m

Blaize.Security

Cryptopia Audit

LOW-3 « Verified

Existence of skin is not checked.

CryptopiaEarlyAccessShipToken.sol: mintTo().

The parameter skinld'is not checked to be set in mapping skins.
Thus, the minter can pass a non-existing skin. Since tokens are
minted through the factory and the user's parameters for minting
are passed, cases, where non-existing skin is passed, may occur.

Recommendation:

Validate skinld to be set OR verify that such ability to set non-
existing skin is allowed (For example, in case if skin should be set
later).

Post-audit.
According to the the Cryptopia team, this is implemented by
design.

LOW-4 + Verified

Admin is able to update skins at any time.

CryptopiaEarlyAccessShipToken.sol: setSkins().

Admin is able to update skins’ names for already set skins. Skins are
part of shils’ metadata, which is usually immutable on most
implementations of NFTs. Thus, allowing the admin to update it at
any time may be unsafe for users who have paid funds for the NFT.

Recommendation:

Remove the ability of updating already existing skins OR verify the
necessity of update.

Post-audit.

According to the Cryptopia team, this is implemented by design.
The team has also assured that once this function is unnecessary,
admin role will be revoked so that skins remain unchanged.

security@blaize tech

B'QiZB.SBCUFity Cryptopia Audit

LOW-5 « Verified

Minting of the tokens via Factory may be blocked.

CryptopiaEarlyAccessShipTokenFactory.sol: mint(), line 228.

The ID of the NFT to mint is determined, starting with 0 and
incrementing by 1. Thus, if an NFT with a certain ID is already minted,
minting via Factory will be blocked as it is impossible to choose an
available ID. The issue can occur as
CryptopiakarlyAccessShipToken.sol allows multiple users with
minter roles. Thus, if other minter mint NFT, Factory can no longer
mint tokens properly. The issue is marked as low since only the
admin can grant minter roles to users.

Recommendation:

Restrict the minter role, so that only the factory can have it

Post-audit.

The Cryptopia team has verified that the minter role will be
granted only via script 2_deploy_contracts.ts where minter role is
granted only to the factory. However, it is still possible to grant
minter role later to other address. Thus, we recommend Cryptopia
team to be careful with the role and ensure that the functionality of
factory is not prevented by other minters.

security@blaize tech m

B'QiZB.SBCUFity Cryptopia Audit

LOWEST-1 « Verified

Any method call allowed

Metatransactions.sol
CryptopiaERC721.s0l
CryptopiakarlyAccessTokenShip.sol

Metatransactions contract allows calls for any method of the
contract (on behalf of the contract itself). In general, it's normal to
have such functionality, though it may open a risky vulnerability
since there are no restrictions for the caller and called methods.
Therefore, the auditors' team highly recommends re-checking the
admin-controlled methods of target contracts so that the admin
role (or any other significant role) will not be assigned to the
contract itself. Also, it is recommended to restrict allowed
functional signatures for public user methods only. The issue is
marked as info, since despite the severity of possible exploitation,
auditors, though the round of testing, verified contracts methods.
However, since contracts are upgradeable, it creates risk during
further development.

Recommendation:

Verify access control to have admin roles not distributed for the
contract. Provide monitoring of the MetaTransactions during the
active phase of the protocol. Also, it is recommended to provide
sanitizing measures on the frontend part of the dApp to restrict

possible functions to be called.

Post-audit.

The Cryptopia team has assured that the token won't be
upgradable after the running of the script migration
3_transfer_ownership.ts. In the following script, the ownership of
Proxy Admin is transferred to the address(1) which is the equivalent
of renouncing the role. Nevertheless, the token remains upgradable
until the script is run. Thereby we recommend the Cryptopia team
to be careful with any possible upgrades of the token.

security@blaize tech m

B'GiZB.SBCUFity Cryptopia Audit

LOWEST-2 « Verified

Ship’s exisiting is checked based on the arbitrary stat
CryptopiaEarlyAccessTokenShip.sol, _exists()

The function now checks if the ship exists based on the
base_speed property. However, there is no guarantee that this
property cannot be 0. Thus, there is a possibility of collisions.
The issue is marked as info since it refers to business logic and
should be verified by the Cryptopia team.

Recommendation:

Verify that base_speed will never be set to 0 for existing ships and
add the appropriate restriction into the ship setting functionality.

Post-audit.

According to the Cryptopia team, this is implemented by design.
The validation will work fine if the base_speed of existing ship is
greater than 0.

LOWEST-3 « Verified

No verification for the allocation token to be minted for the
contract

CryptopiakarlyAccessTokenShip.sol

There is a functionality for the allocation token to be transferred to
the claimer or beneficiary. However, there is no functionality for the
token distribution to the contract in the first place.

Recommendation:

Provide the description of the allocation token distribution to the
contract.

Post-audit. The Cryptopia team has verified that the necessary
amount of token will be transferred manually to the contract’s
balance. However we still recommend to add safety checks either
in the contract’s balance or in the additional script to ensure that
tokens are transferred in a correct amount.

security@blaize tech m

B'GiZB.SBCUFity Cryptopia Audit

LOWEST-4 Acknowledged

Custom errors shovuld be used.

NativeMetaTransaction.sol, CryptopiaERC721.s0l,
CryptopiakarlyAccessShipTokenFactory.sol, TokenRetriever.sol
Starting from the 0.8.4 version of Solidity, it is recommended to use
custom errors instead of storing error message strings in storage
and use “require” statements. Using custom errors is more efficient
regarding gas spending and increases code readability.

Recommendation:

Use custom errors.

Post-audit.
The team has acknowledged the issue. However due to the
timelines, custom errors won't be implemented in the current code.

LOWEST-5 « Verified

Parameters lack validation.

CryptopiaEarlyAccessShipTokenFactory.sol: initialze(),
setBeneficiary(), setReferrer().

Address parameters miss validation for not being zero address. The
issue is important for the _beneficiary parameter since funds are
sent to this address.

CryptopiaEarlyAccessShipToken.sol: initialize().

It is recommended to validate if a token parameter is a smart
contract and a beneficiary is not a zero address.
CryptopiaERC721.sol: __ CryptopiaERC721_init().

Validate that parameter _authenticator implements the interface
of |[Authenticator.

Recommendation:
Add validations.
Post-audit:

Cryptopia team verified parameters manually, via config and via
the migration script

security@blaize tech m

B'GiZB.SBCUFity Cryptopia Audit

LOWEST-6 Acknowledged

Lack of events.

CryptopiaEarlyAccessShipTokenFactory.sol: setBeneficiary(),
setReferrer(), setLegacyMintedAt(), upgrade(), mint(), withdraw().
CryptopiaEarlyAccessShipToken.sol: setSkins(), claim(), withdraw().
CryptopiaERC721.sol: setContractURI(), setBaseTokenURI().

In order to keep track of historical changes in storage variables, it
is recommended to emit events on every change in the functions
that modify the storage or interact with funds.

Recommendation:

Emit events in the functions which modify state.

Post-audit.
The team has acknowledged the issue. However due to the
timelines, events won't be implemented in the current code.

LOWEST-7 « Verified

Token is upgradable.

CryptopiaEarlyAccessShipToken.sol

The implementation of NFT is upgradable, which contradicts the
safety pattern of ERC721. Since the ERC721 usually represents
valuable assets, it is implemented as a non-upgradable token.
Moreover, some marketplaces may not accept a token with
upgradable implementation due to safety issues since the
implementation owner can update its logic regarding ownership of
NFTs and NFT metadata.

Recommendation:

Verify that implementation of CryptopiaEarlyAccessShipToken
should be upgradable.

Post-audit. The token’s upgradability will be permanently disabled
after running the script 3_transfer_ownership.ts

security@blaize tech E

B'GiZB.SBCUFity Cryptopia Audit

LOWEST-8 Acknowledged

Insecure randomness.

CryptopiaEarlyAccessShipTokenFactory.sol: _randomy).

The random value is generated based on the previous block's
hash, the address of msg.sender, and the current random seed.
Such randomness can be easily manipulated as transactions can
be included in a certain block where the previous block's hash will
give the desired value. This value is then used to determine the
rarity of the ship. Thus, manipulating the randomness may provide
the users with a certain advantage. The issue is marked as info due
to the statement in the commentary section where it is said that
such randomness is enough of the protocol.

Recommendation:

We recommend two approaches on how to achieve a random
value on-chain.

1. Chainlink VRF oracles or any alternative, including a custom
backend for generating random values on-chain.

2. Usage of a future randao value. In this solution, mint can be split
into two transactions. The first transaction determines the future
block number (for example, block.number +128), and the second
one will perform the mint using the block.prevrandao for a truly
random value after a determined earlier block. Note! This
solution works only for Ethereum forks of Ethereum, which
migrated to PoOS. In other chains, you may use a hash of a future
block specified block (block.number +128). (It is more difficult to
manipulate future blockchash than blockhash of previous
block). Also, note that the function blockchash'has access only
to the last 256 blocks. Thus, the user should be on time to be able
to mint NFT using the hash of the specified block.

Post-audit.

The team has acknowledged the issue and verified that such type
of randomness generation is enough for the protocol. Though
auditors’ team still leave the concern about it as it is the violation
of a standard checklist.

security@blaize tech m

Blaize.Security

Cryptopia Audit

—
contracts\source\tokens\ERC721\CryptopiaEarlyAccessShip\
CryptopiaEarlyAccessShipTokenFactory.sol
CryptopiaEarlyAccessShipToken.sol
contracts\source\tokens\
ERC721\CryptopiaERC721.s0l

v/ Re-entrancy Pass
v/ Access Management Hierarchy Pass
v/ Arithmetic Over/Under Flows Pass
v/ Delegatecall Unexpected Ether Pass
v/ Default Public Visibility Pass
v/ Hidden Malicious Code Pass
v/ Entropy lllusion (Lack of Randomness) Fail

v/ External Contract Referencing Pass
v/ Short Address/Parameter Attack Pass
v/ Unchecked CALL Return Values Pass
v/ Race Conditions/Front Running Pass
v/ General Denial Of Service (DOS) Pass
v/ Uninitialized Storage Pointers Pass
v/ Floating Points and Precision Pass
v/ Tx.Origin Authentication Pass
v/ Signatures Replay Pass
v/ Pool Asset Security (backdoors inthe Pass

underlying ERC-20)

security@blaize tech

Blaize.Security

—

contracts\source\common\meta_transactions\
ContentMixin.sol
EIP712Base.sol
NativeMetaTransaction.sol
contracts\source\tokens\ERC20\retriever\
TokenRetriever.sol

v/ Re-entrancy Pass

v/ Access Management Hierarchy Pass

v/ Arithmetic Over/Under Flows Pass

v/ Delegatecall Unexpected Ether Pass

v/ Default Public Visibility Pass

v/ Hidden Malicious Code Pass

v/ Entropy lllusion (Lack of Randomness) Pass

v/ External Contract Referencing Pass

v/ Short Address/Parameter Attack Pass

v/ Unchecked CALL Return Values Pass

v/ Race Conditions/Front Running Pass

v/ General Denial Of Service (DOS) Pass

v/ Uninitialized Storage Pointers Pass

v/ Floating Points and Precision Pass

v/ Tx.Origin Authentication Pass

v/ Signatures Replay Pass

v/ Pool Asset Security (backdoors inthe Pass

Cryptopia Audit

underlying ERC-20)

security@blaize tech

Blaize.Security

Cryptopia Audit

CODE COVERAGE AND TEST RESULTS
FOR ALL FILES, PREPARED BY BLAIZE
SECURITY TEAM

Cryptopia: CryptopiaERC721

v/
v

NN KK

NS

Vv

Getters

Should get token uri by token id (87ms)

Should return true if owner or approved (78ms)

Set contract uri

Should set new contract uri

Should revert with 'AccessControl: account is missing role' (107ms)
Set contract uri

Should set new contract uri

Should revert with 'AccessControl: account is missing role' (82ms)
Set base contract uri

Should set new base contract uri

Should revert with 'AccessControl: account is missing role' (82ms)
#supportsinterface

Should return true

Cryptopia: CryptopiaEarlyAccessShipToken

SASS SAK

NS

%

withdraw

Change receiver address balance (49ms)
Should revert with 'Not beneficiary' (50ms)
Should revert with 'Unable to withdraw'

claim

Change receiver address balance (96ms)
Should revert with 'No allocation' (114ms)
Should revert with 'Not owner of toke' (91ms)
Should revert with 'Unable to claim' (74ms)
mintTo

Change receiver address balance (62ms)
Should revert with 'AccessControl: account is missing role' (108ms)
Getters

Should check ship instances (82ms)

Should getShipCount

Ship Getters

Should getShips (41ms)

security@blaize tech

Blaize.Security

v
v

COKS

v/

Cryptopia Audit

Setters

Should set ship skins

Should revert with ‘AccessControl: account is missing role' (103ms)
Get ship by name

Should return data by ship name

HretrieveTokens

Should retrieve contract balance (50ms)

Should revert with 'Use withdraw'

Should revert with 'AccessControl: account is missing role' (100ms)
Get ship by name

Should return data by ship name

Cryptopia: Factory

NN NN S8 S O ASS SKS K

SN

Mint

Change receiver address balance (75ms)

Change receiver address balance with referrer bytes(0) (64ms)
Revert with 'Referrer not found' (65ms)

revert with 'Unable to pay'

Set beneficiary

Sets new beneficiary

Should revert with '‘Beneficiary cannot be zero address'
Should revert with 'Ownable: caller is not the owner'
Set referrer

Sets new referrer

Should revert with 'Referrer cannot be zero address'
Should revert with 'Ownable: caller is not the owner'
Set legacy minted at

Sets legacy mint

Should revert with 'Ownable: caller is not the owner'
upgrade

Upgrade tokens (189ms)

Reverts with 'Sender not owner' (89ms)

Reverts with 'Ship not upgradable'

Withdraw

Change receiver address balance (89ms)

Should revert with 'Ownable: caller is not the owner'
Get current token id

Should get current token id

security@blaize tech

Blaize.Security

v
v
v

v
v

Cryptopia Audit

Hretrievelokens

Should retrieve contract balance (44ms)

Should revert with 'Ownable: caller is not the owner'
#onERC721Received

Should return true

#initialized

Should revert with 'Initializable: contract is already initialized'
Should revert with 'Beneficiary cannot be zero address' (336ms)

Cryptopia: CryptopiaERC721

v/
v

v/

HretrieveETH()

Should retrieve ETH

Should revert with 'AccessControl: account is missing role' (112ms)
#isApprovedForAll

Should return true

Cryptopia: CryptopiaEarlyAccessShipToken

v/

#initialized
Should revert with 'Initializable: contract is already initialized'

Cryptopia: Scenarios

v/
7

Claim daily allocation (428ms)
Upgrade tokens by factory: scenarios (240ms)

Cryptopia -- meta transactions

VNSNS AS

Meta transaction

Pay for user transaction (196ms)

Try to withdraw token from contract as regular user
Try to mint token as regular user

Try to set skin as regular user

Try to approve and transfer NFT from another user
Try to invoke meta transaction with zero address
Make bad reguest

66 passing.

security@blaize tech

Blaize.Security Cryptopia Audit

TEST
COVERAGE
RESULTS

FILE % STMTS % BRANCH % FUNCS
CryptopiaEarlyAccessShipTokenFactory.sol 100 84 100
CryptopiaEarlyAccessShipToken.sol 100 90 100
CryptopiaERC721.s0l 100 815 100
NativeMetaTransaction.sol 100 100 100
EIP712Base.sol 100 50 100
ContentMixin.sol 100 100 100
TokenRetriever.sol 100 100 100
All files 100 86.5 100

security@blaizetech m

B'GiZB.SBCUFity Cryptopia Audit

DISCLAIMER

The information presented in this report is an intellectual property
of the customer, including all the presented documentation, code
databases, labels, titles, ways of usage, as well as the information
about potential vulnerabilities and methods of their exploitation.
This audit report does not give any warranties on the absolute
security of the code. Blaize.Security is not responsible for how you
use this product and does not constitute any investment advice.

Blaize.Security does not provide any warranty that the working
product will be compatible with any software, system, protocol or
service and operate without interruption. We do not claim the
investigated product is able to meet your or anyone else’s
requirements and be fully secure, complete, accurate, and free of
any errors and code inconsistency.

We are not responsible for all subsequent changes, deletions, and
relocations of the code within the contracts that are the subjects
of this report.

You should perceive Blaize.Security as a tool, which helps to
investigate and detect the weaknesses and vulnerable parts that
may accelerate the technology improvements and faster error
elimination.

security@blaize tech m

	Audit rating
	Auditing technics
	Complete analysis
	Complete analysis-1
	Contents
	Cryptopia scheme
	Cryptopia scheme-1
	Cryptopia scheme-2
	Cryptopia scheme-3
	Executive Summary
	Executive Summary-1
	Executive Summary-2
	Graph of vulnerability
	Page#1
	Page#2
	Page#3
	Page#3-1
	Page#4
	Page#5
	Page#6
	Page#7
	Page#8
	Page#9
	Page#9-1
	Page#9-2
	Page#9-3
	Page#9-4
	Page#9-5
	Page#9-6
	Page#9-7
	Page#9-8
	Page#9-9
	Page#11
	Page#11-1
	Page#12
	Page#12-1
	Page#12-2
	Page#13
	Page#14
	Severity Definition
	Title Page

